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Ob ChatGPT oder Deep-Fake-Fotos – das Thema KI ist heute allgegenwärtig. Für mich steht

jetzt schon fest: Mit den neuen KI-Systemen treten wir in eine neue Epoche des digitalen

Wandels ein.

Allein die rasante Entwicklung im Bereich der Textgeneratoren wie ChatGPT zeigt: Der

kompetente Umgang mit KI wird zu einer entscheidenden Schlüsselkompetenz für unsere

Schülerinnen und Schüler. Deshalb haben wir die „Künstliche Intelligenz“ im Fach Informatik

ab der Jahrgangsstufe 11 des neuen neunjährigen Gymnasiums fest im LehrplanPLUS veran-

kert. Mit der vorliegenden Broschüre geben wir unseren Informatiklehrkräften das Rüstzeug

für den Unterricht im Lernbereich KI an die Hand, um jungen Menschen grundlegende Funk-

tionsweisen von KI-Systemen beizubringen.

Ich danke den Mitgliedern des Arbeitskreises am Staatsinstitut für Schulqualität und Bil-

dungsforschung für die Erarbeitung dieser praxisorientierten Handreichung. Allen Informatik-

lehrkräften wünsche ich anregende Impulse bei der Lektüre und viel Freude beim Umsetzen

der neuen Erkenntnisse im Unterricht!

München, im April 2023

Prof. Dr. Michael Piazolo

Bayerischer Staatsminister

für Unterricht und Kultus





Vorwort

Liebe Kolleginnen und Kollegen,

den Lernbereich „Künstliche Intelligenz“ in den Lehrplan-PLUS aufzunehmen, war bei der

grundlegenden Konzeption des Lehrplan eine gewagte Entscheidung, denn Sie als Infor-

matiklehrkräfte wurden in Ihrem Studium nicht auf dieses Thema vorbereitet. Die rasant

fortschreitende Entwicklung von KI-Anwendungen und die große Präsenz des Themas in

den Medien zeigen aber, dass die damalige Entscheidung richtig war: Unsere Schülerinnen

und Schüler müssen sich mit zukunftsweisenden Technologien wie Künstliche Intelligenz

auseinandersetzen, um „sachgerecht, selbstbestimmt und verantwortungsvoll“ handeln zu

können, wie es in den übergreifenden Bildung- und Erziehungszielen des LehrplanPLUS heißt.

Die Aufnahme des Themas in den Lehrplan zieht allerdings auch einen großen Bedarf an Fort-

und Weiterbildungsangeboten nach sich. Deswegen wurde die KI-Fortbildungsinitiative ins

Leben gerufen, in deren Rahmen u. a. ein Arbeitskreis „KI“ gebildet wurde, der in sehr enger

Kooperation zwischen ALP und ISB innerhalb kürzester Zeit sowohl einen Selbstlernkurs als

auch diese Handreichung für den neuen Lernbereich KI in Jahrgangsstufe 11 entwickelte.

Natürlich soll die Handreichung kein Lehrbuch ersetzen, sie vermittelt Ihnen aber fachliche

Grundlagen und gibt didaktische Hinweise, die Sie bei der unterrichtlichen Umsetzung un-

terstützen sollen. Darüber hinaus bietet sie eine große Fülle an hilfreichen, größtenteils vom

Arbeitskreis selbst entwickelten Materialien und Tools, die in der Handreichung beschrieben

und Ihnen über einen begleitenden Mebiskurs zur Verfügung gestellt werden.

Ich möchte mich an dieser Stelle zum einen beim Bayerischen Staatsministerium für Unterricht

und Kultus bedanken, dass es die Fortbildungsinitiative ermöglich hat, zum anderen bei den

Mitgliedern des Arbeitskreises KI für deren überaus engagierte und gelungene Arbeit.

Lassen Sie sich nun begeistern von dem spannenden Thema KI und geben Sie Ihre Begeisterung

an Ihre Schülerinnen und Schüler weiter. Ich wünsche Ihnen viel Freude dabei.

München, im April 2023

Anselm Räde, Direktor des ISB
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k a p i t e l 1 Einführung

„ Wir neigen dazu, die Auswirkungen einer neuen Technologie auf kurze Sicht zu überschätzen
und auf lange Sicht zu unterschätzen.“

Amaras Gesetz

Künstliche Intelligenz ist eine Technologie, die in vielen Bereichen Anwendung findet und die

auf ganz unterschiedliche Weise Einfluss auf unser Leben nimmt. Obwohl diese Technologie

nicht neu ist, steckt sie eigentlich noch in den Kinderschuhen. KI-Systeme werden immer

leistungsfähiger, daher ist damit zu rechnen, dass ihr Einsatz in Bereichen, in denen KI

bereits heute genutzt wird, in Zukunft stark zunehmen wird. Außerdem werden sich neue

Anwendungsgebiete eröffnen, in denen KI bislang noch keinen Einzug gehalten hat.

Unsere Schülerinnen und Schüler verwenden KI-Systeme, oft ohne es zu wissen oder zu

merken. Künstliche Intelligenz wird ihnen nach ihrer Schulzeit sogar noch häufiger begegnen –

sowohl im Beruf als auch im Alltag. Dafür müssen sie gewappnet sein. Die Schülerinnen und

Schüler mit den notwendigen Kompetenzen auszustatten, um in Zukunft selbstbestimmt und

verantwortungsbewusst mit Technologien wie Künstliche Intelligenz umgehen zu können, ist

Teil des Bildungsauftrags der Schulen.

Dem Fach Informatik kommt dabei eine Schlüsselrolle zu, denn die Verwirklichung dieses

Bildungsauftrags erfordert, dass die Schülerinnen und Schüler nicht nur wissen, wie Künstliche

Intelligenz genutzt werden kann und welche Auswirkungen sie auf Individuum und Gesellschaft

haben kann, sondern auch, dass sie die Technologie verstehen und erklären können. Denn

eine nachhaltige digitale Bildung ist gemäß der Dagstuhl-Erklärung der Gesellschaft für

Informatik (s. Brinda et al. (2016)) nur möglich, wenn Themen wie Künstliche Intelligenz aus

unterschiedlichen Perspektiven betrachtet und hinterfragt werden.

Um dieser Forderung gerecht zu werden und der Künstlichen Intelligenz den Raum zu geben,

den ein derart komplexes Thema erfordert, wurde im LehrplanPLUS in Jahrgangsstufe 11

des Gymnasiums ein eigener Lernbereich „Künstliche Intelligenz“ in den Fächern Informatik

13
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Abb. 1.1: Das Dagstuhl-Dreieck der Dagstuhl-Erklärung (Brinda et al., 2016, S. 3).

(NTG), spät beginnende Informatik (HG, SG, MuG, SWG) und Wirtschaftsinformatik (WWG)

geschaffen, sodass die Schülerinnen und Schüler aller Ausbildungsrichtungen grundlegende

Kompetenzen in diesem Bereich erwerben.

Der Lernbereich umfasst in den Fächern Informatik und spät beginnende Informatik sechs

Kompetenzerwartungen. In Informatik sind dafür ca. 16 Stunden vorgesehen, in spät begin-

nender Informatik ca. 12 Stunden. Worin die Unterschiede in den Kompetenzerwartungen

zwischen den beiden Fächern im Einzelnen bestehen, wird in der Handreichung an der entspre-

chenden Stelle erläutert. Die Wirtschaftsinformatik sieht wie die spät beginnende Informatik

ca. 12 Stunden für diesen Lernbereich vor. Das Fach Wirtschaftsinformatik steht zwar nicht

im Fokus dieser Handreichung, allerdings sind die für dieses Fach formulierten Kompetenzer-

wartungen denen der spät beginnenden Informatik sehr ähnlich, sodass weite Teile der Inhalte

der Handreichung eins zu eins auf die Wirtschaftsinformatik übertragen werden können.

Die folgenden Kapitel der Handreichung orientieren sich an den Kompetenzerwartungen des

Lernbereichs. Kapitel 2 behandelt die Grundlagen und deckt damit im Wesentlichen die erste

Kompetenzerwartung ab, Kapitel 3 und 4 beschäftigen sich mit dem Entscheidungsbaum-

bzw. dem 𝑘-nächste-Nachbarn-Algorithmus und beziehen sich damit überwiegend auf die

zweite und dritte Kompetenzerwartung. Kapitel 5 hat das Perzeptron und das künstliche

neuronale Netz zum Thema, worüber in der vierten und fünften Kompetenzerwartung die

Rede ist, und Kapitel 6 nimmt abschließend die Chancen und Risiken in den Blick, die in der

sechsten Kompetenzerwartung entsprechend verankert sind.
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Jedes der folgenden Kapitel beginnt mit einem Abschnitt, in dem zunächst die fachlichen

Grundlagen dargelegt werden. Darauf folgt jeweils ein zweiter Abschnitt, in dem didaktische

Hinweise zur unterrichtlichen Umsetzung gegeben werden, ggf. gefolgt von einem dritten

Abschnitt mit Hinweisen und Erläuterungen zum dazugehörigen Material.

Die Handreichung richtet sich an Gymnasiallehrkräfte mit Fakultas in Informatik. Die Inhalte

können aber auch für Lehrkräfte anderer Fächer bzw. anderer Schularten interessant sein, ins-

besondere für Wirtschaft-und-Recht-Lehrkräfte, die den Lernbereich „Künstliche Intelligenz“

im Fach Wirtschaftsinformatik unterrichten. Die Handreichung geht allerdings davon aus,

dass die Leserin bzw. der Leser als Vorwissen ein vertieftes Lehramtsstudium in Informatik

mitbringt, dennoch sind weite Teile der Handreichung hoffentlich auch für Leserinnen und

Leser mit weniger Informatikkenntnissen verständlich und nachvollziehbar.

Die Handreichung ist so konzipiert, dass sie sich zum Selbststudium eignet. Sie geht von

keinen Vorkenntnissen im Bereich der Künstlichen Intelligenz aus. Sie soll die Informatik-

lehrkräfte in die Lage versetzen, den Lernbereich kompetent zu unterrichten. Darüber hin-

aus sollen die bereitgestellten Materialien bei der unterrichtlichen Umsetzung unterstüt-

zen. Es wird empfohlen, den parallel zur Handreichung entwickelten Selbstlernkurs an der

ALP (s. links.alp.dillingen.de/ki) entweder vorab oder mit der Handreichung verzahnt

zu bearbeiten. An Selbstlernkurs und Handreichung schließt sich eine eintägige praxisbe-

zogene Präsenzfortbildung im Rahmen der Regionalen Lehrerfortbildung (RLFB) an, in

der die Inhalte vertieft und anhand von Beispielen praktisch umgesetzt werden (s. auch

links.alp.dillingen.de/ki). Deren Besuch wird ebenfalls wärmstens empfohlen.

Die Materialien zur Handreichung werden über einen Kurs der mebis Lernplattform zur

Verfügung gestellt (s. https://mebis.link/NFF6EV).

links.alp.dillingen.de/ki
links.alp.dillingen.de/ki
https://mebis.link/NFF6EV
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„ Schlägt man eine beliebige Tageszeitung auf, stehen die Chancen gut, dass in mindestens einem Artikel die
Wörter ’Algorithmus’, ’Big Data’ oder ’künstliche Intelligenz’ vorkommen. (...) Aber was genau steckt dahinter?“

Zweig (2019)
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2.1 Fachliche Grundlagen

2.1.1 Ansätze zur Definition von Künstlicher Intelligenz

Die Definition von Künstlicher Intelligenz (KI) stellt eine besondere Herausforderung dar.

In der Literatur gibt es hierzu unterschiedliche Ansätze. Doch bevor Künstliche Intelligenz

definiert werden kann, sollte erst der Begriff „Intelligenz“ betrachtet werden.
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2.1.1.1 Intelligenz

Zur Annäherung an den Begriff „Intelligenz“ können folgende Definitionen herangezogen

werden. Intelligenz ist ...

„die Fähigkeit [des Menschen], abstrakt und vernünftig zu denken und daraus zweckvolles

Handeln abzuleiten.“ (Duden-online)

„im allgemeinen Verständnis eine bestimmte Form der Begabung, die sich als Fähigkeit

(oder eine Gruppe von verschiedenen Fähigkeiten) äußert, anschauliche sowie abstrakte

Beziehungen zu erfassen, herzustellen und zu deuten und sich dadurch an neuartige

Situationen anzupassen und sie gegebenenfalls durch problemlösendes Verhalten zu

bewältigen.“ (Brockhaus-Enzyklopädie-Online)

Beide Definitionen von Intelligenz zielen auf die Fähigkeit ab, Probleme durch zweckvolles

und zielgerichtetes Handeln zu lösen und dabei die Fähigkeiten zum abstrakten Begreifen von

Situationen und Zusammenhängen einzusetzen. Einen weiteren Aspekt, der später auch für

die Künstliche Intelligenz entscheidend ist, liefern folgende Definitionen. Intelligenz ist ...

„die Fähigkeit, aus Erfahrungen Nutzen zu ziehen und das Gegebene in Richtung auf

das Mögliche zu überschreiten.“ (Zimbardo, 1995, S. 528)

„in der Psychologie ein hypothetisches Konstrukt (d. h. eine Erklärung für ein nicht

direkt beobachtbares Phänomen), das die erworbenen kognitiven Fähigkeiten und Wissens-

bestände einer Person bezeichnet, die ihr zu einem gegebenen Zeitpunkt zur Verfügung

stehen.“ (Gabler-Wirtschaftslexikon)

Intelligenz setzt nach diesen Ansätzen auch das Erwerben von Erkenntnissen und Fähigkeiten

voraus, die dem Menschen dann zu einem bestimmten Zeitpunkt zur Verfügung stehen und

genutzt werden können. Dies benötigt eine Vorarbeit im Wissenserwerb und im Training von

Fähigkeiten und Fertigkeiten, die dann zielgerichtet zum Problemlösen eingesetzt werden

können. Mithilfe dieser beiden Ansätze kann nun auch das Konzept der Künstlichen Intelligenz

betrachtet werden.
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2.1.1.2 Künstliche Intelligenz (KI)

Die Definitionen von KI divergieren bereits in deren grundlegenden Ansätzen. Beispielsweise

unterscheiden Russel & Norvig (2012) Ansätze zur Definition von KI, die sich auf menschliches

Denken und Handeln konzentrieren, von solchen, die rationales Denken und Handeln in den

Vordergrund rücken.

Auf menschliches Denken und Handeln bezogene Definitionen lauten beispielsweise wie folgt:

„Der Begriff künstliche Intelligenz bezeichnet das Verhalten einer Maschine, das – wenn

sich ein Mensch genauso verhält – als intelligent angesehen wird.“ (Simmons & Chappell,

1988, S. 14)

„Als Künstliche Intelligenz (KI) bezeichnet man eine Software, mit deren Hilfe ein

Computer eine kognitive Tätigkeit ausführt, die normalerweise Menschen erledigen.“

(Zweig, 2019, S. 126)

„Künstliche Intelligenz ist die Lehre davon, wie man Computer dazu bringt, Dinge zu

tun, die Menschen im Moment noch besser können.“ (Rich, 1983)

Derartige Definitionen machen die Künstliche Intelligenz an Fähigkeiten der menschlichen

Vorbilder fest. Dabei ist zu beachten, dass diese Ansätze nur auf ausgewählte Fertigkeiten des

Menschen abzielen. Ähnelt das Ergebnis der Maschine dem Verhalten eines Menschen oder

übertrifft es dieses sogar, wird sie als intelligent angesehen. Aber wie kann festgestellt werden,

ob eine Maschine etwas besser kann als ein Mensch? Mittlerweile kann sie besser Schach

spielen und schneller große Datenmengen verarbeiten, aber ist sie dadurch auch intelligent im

Sinne obiger Definition von Simmons & Chappell?

Ein bekanntes Experiment, das zur Beantwortung dieser Frage herangezogen werden kann, ist

der Turing-Test. Den 1950 von Alan Turing entwickelten Test besteht ein Computer, wenn ein

Mensch in einer schriftlichen Unterhaltung mit der Maschine nicht bestimmen kann, ob die

Antworten von einem Mensch stammen oder nicht. Dafür muss ein Computer nach Russel &

Norvig (2012) natürliche Sprache verarbeiten, Informationen speichern, logisch schließen und

sich an neue Umstände anpassen, also lernen können. Obwohl Maschinen einzelne Fähigkeiten

bereits haben, findet der Turing-Test heute noch in abgewandelter Form Anwendung, um

„echte“ Menschen von Maschinen zu unterscheiden.
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Um zu beweisen, dass ein Nutzer bestimmter Online-

Systeme tatsächlich ein Mensch ist, muss er ein Capt-

cha (s. Abbildung 2.1) lösen. Die Abkürzung steht

dabei für completly automated public turing test

to tell computers and humans apart, ein moderner

Turing-Test. Besteht eine Maschine den Turing-Test,

so kann sie menschliche Intelligenz simulieren und

gilt daher als „künstlich intelligent“.

Darüber hinaus werden in der Literatur zur Defi-

nition von KI auch Ansätze verfolgt, die rationales

Denken und Handeln in den Vordergrund stellen.

Künstliche Intelligenz ist ...
Abb. 2.1: Recaptcha von Google.

„die Fähigkeit einer Maschine, menschliche Fähigkeiten wie logisches Denken, Lernen,

Planen und Kreativität zu imitieren.“ (Europäisches Parlament, 2020)

„die Fähigkeit eines Systems, externe Daten richtig zu interpretieren, aus diesen Daten

zu lernen und diese Erkenntnisse zu nutzen, um durch flexible Anpassung bestimmte

Ziele und Aufgaben zu erreichen.“ (Kaplan & Haenlein, 2019)

„das Studium derjenigen mathematischen Formalismen, die es ermöglichen, wahrzuneh-

men, logisch zu schließen und zu agieren.“ (Winston, 1992)

Diese Ansätze zielen zum einen auf das Prinzip des logischen Schließens ab. Dabei werden

„Muster für Argumentationsstrukturen [entwickelt] [...], die immer zu korrekten Schlüssen

führten, wenn ihnen korrekte Prämissen [(Ausgangspunkt eines logischen Schlusses)] über-

geben wurden“ (Russel & Norvig, 2012, S. 25). Die Maschine kann also Schlussfolgerungen

für Eingaben treffen, die sie nach ihren persönlichen Logiksystemen bestimmt, und dement-

sprechend agieren und reagieren. Zum anderen wird in diesen Definitionen deutlich, dass sich

KI-Systeme auch durch den Aspekt auszeichnen, aus Daten zu lernen, dadurch flexibel neue

Herausforderungen zu meistern und kreativ Aufgaben zu lösen.

Auch nach Prof. Katharina Zweig unterliegen die Definitionen der künstlichen Intelligenz

einem stetigen Wandel, wenn beispielsweise Maschinen neue Fähigkeiten erwerben. „Sobald

ein Computer das Gewünschte tun kann, nehmen wir diese Tätigkeiten als weniger intelligent



2.1 Fachliche Grundlagen 21

wahr, gerade weil ein Computer sie kann“ (Zweig, 2019, S. 126). Lange wurde es nicht für

möglich gehalten, dass ein Computer besser Schach spielen kann als ein Mensch. Im Jahr 1996

schlug jedoch Deep Blue den zu dieser Zeit amtierenden Schachweltmeister Garri Kasparow.

Seitdem wird die Fähigkeit, besser als jeder Mensch Schach spielen zu können, nicht mehr

verwendet, um eine Maschine als intelligent einzuschätzen. Die Definition von Künstlicher

Intelligenz ist schwer umsetzbar und kann höchstens für den jeweiligen Entwicklungsstand

erstellt werden. Da die „Definition so schwammig ist, dass sie nahezu nutzlos ist“ (Zweig,

2019, S. 126), bezeichnen manche Wissenschaftlerinnen und Wissenschaftler den Namen des

Forschungsfeldes „Künstliche Intelligenz“ als Fehlbenennung.

2.1.2 Grundideen von Verfahren der Künstlichen Intelligenz

In den beiden in Abschnitt 2.1.1.2 erarbeiteten Definitionsansätzen spiegeln sich zwei grund-

sätzliche Verfahren der KI wider, wissensbasierte Systeme (insbesondere Expertensysteme)

und maschinelles Lernen.

2.1.2.1 Expertensysteme

Expertensysteme können mithilfe einer vorgegebenen Wissensbasis und der Fähigkeit des

logischen Schlussfolgerns Aufgaben lösen. Hierbei erfolgt eine Trennung von Wissensbasis und

Verarbeitung des Wissens in der sogenannten Inferenzmaschine.

Abbildung 2.2: Grundsätzlicher Aufbau von Expertensystemen.

Ein Experte befüllt die Wissensbasis des Expertensystems mit Informationen, Zusammenhän-

gen und Regeln (vgl. Lämmel & Cleve, 2020, S. 26). Eine Inferenzmaschine liefert Antworten

auf die Anfragen des Nutzers durch logisches Schlussfolgern auf Basis der zugrunde liegenden
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Wissensbasis (s. Abbildung 2.2). Dabei ist zu beachten, dass derartige Systeme die Wissens-

basis nicht selbstständig verändern können. Eine Erweiterung oder Veränderung kann nur

durch den Experten erfolgen.

Expertensysteme kommen immer dort zum Einsatz, wo die Wissensbasis erstellt und die

logischen Zusammenhänge von der Inferenzmaschine interpretiert und angewendet werden

können. Bei medizinischen Diagnosen, der Vorhersage von Erdbeben und der Fehlerdiagnose

bei technischen Geräten liegen detaillierte Daten und Zusammenhänge vor, aus denen sich

mithilfe von logischen Schlussfolgerungen Ergebnisse produzieren lassen. Beispiele für wissens-

basierte Expertensysteme sind der oben genannte Schachcomputer Deep Blue, der 1997 den

Schachgroßmeister Kasparow in einer Partie Schach schlug, und der Ratecomputer Watson,

der von IBM entwickelt wurde und 2011 die menschlichen Mitspieler in der Fernseh-Quizshow

„Jeopardy!“ besiegte.

Die Erstellung einer Wissensbasis sowie der Entwurf von Anfragen an Expertensysteme, die

diese Wissensbasis verwenden, wird in Informatik Jgst. 13 (erhöhtes Anforderungsniveau) und

daher in der Handreichung für die Jgst. 13 thematisiert.

2.1.2.2 Maschinelles Lernen

Ein weiteres grundsätzliches Verfahren der Künstlichen Intelligenz ist das maschinelle Ler-

nen. In Jgst. 11 stehen ausgewählte Algorithmen dieses Ansatzes im Vordergrund. „Beim

maschinellen Lernen werden auf Basis einer typischerweise großen Menge an Daten [not-

wendige] Regeln, Verhaltensweisen oder Muster abgeleitet bzw. identifiziert – also ‚gelernt‘.

Das Gelernte wird in einem Modell gespeichert und kann im Anschluss auf neue Daten

angewendet werden (s. Abbildung 2.3). [...] Maschinelles Lernen wird vor allem überall

dort eingesetzt, wo es aufgrund der Charakteristik des Problems nicht effizient möglich

ist, das Wissen so explizit zu repräsentieren, dass es ein Computer verarbeiten kann“

(https://computingeducation.de/proj-ml-uebersicht/).

Mithilfe dieses Verfahrens können Systeme erstellt werden, die Aufgaben lösen, die mit wis-

sensbasierten Anwendungen alleine nicht gelöst werden können. Ein Beispiel dafür stellt

der Spielcomputer AlphaGo dar. Go ist ein asiatisches Brettspiel, das im Hinblick auf die

Zugmöglichkeiten erheblich komplexer als Schach ist. Das Spielfeld ist 19× 19 Felder groß und

https://computingeducation.de/proj-ml-uebersicht/
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Abbildung 2.3: Grundsätzlicher Aufbau von Systemen mit maschinellem Lernen.

es gibt um die 2 · 10170 Spielstellungen. Deshalb ist die Herangehensweise von Deep Blue, das

Durchprobieren und Bewerten von Zugmöglichkeiten, auch mit enormer Rechenleistung nicht

in überschaubarer Zeit möglich. Im Jahr 2016 besiegte AlphaGo (DeepMind) den weltbesten

Go-Spieler, Lee Sedol. Das System setzte im Gegensatz zu Deep Blue auf Verfahren des

maschinellen Lernens. Ende 2017 präsentierte die Firma DeepMind die KI AlphaZero, die

innerhalb weniger Stunden die Spiele Schach und Go lernte und besser als jede Software

war, die bis dato entwickelt wurde. AlphaZero bekam dabei nur die jeweiligen Spielregeln

vorgegeben und erlernte die Spiele dann, indem es längere Zeit gegen sich selbst trainierte.

Der KI wurden dabei keine menschlichen Spielstrategien gezeigt.

Ein weiteres Beispiel des maschinelles Lernens

ist die Mustererkennung. Beispielsweise ließ

Google Street View die Hausnummern auf den

Bildern der Street-View-Kameras zuerst von

Mitarbeitern bestimmen. Aufgrund der schieren

Menge an Bildern war dies aber schnell nicht

mehr in akzeptabler Zeit machbar. So entwi-

ckelte Google einen Algorithmus, der lernte,

Hausnummern in den Aufnahmen zu erkennen.

Abb. 2.4: Recaptcha von Google mit

Foto einer Hausnummer1.

Durch die Auswertung der Nutzereingaben in die Captcha Abfragen (reCAPTCHA) von

Google wurde die Trefferquote des Algorithmus kontinuierlich verbessert (s. Abbildung 2.4).

Den Nutzern wurden dabei immer wieder Bilder von Hausnummern gezeigt, die sie eingeben

sollten. Dabei vertraute man darauf, dass der Großteil der Eingaben ein korrektes Ergebnis

1https://pagepipe.com/how-google-no-captcha-captcha-slows-down-your-mobile-site/

https://pagepipe.com/how-google-no-captcha-captcha-slows-down-your-mobile-site/
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lieferte. Die Bilderkennung wurde dadurch so stark verbessert, dass sie jetzt auch die Captchas

von Googles reCAPTCHA lösen kann.

2.1.3 Arten des maschinellen Lernens

Um sich dem Thema „Maschinelles Lernen“ zu nähern, lohnt sich zunächst ein Blick auf die

Definition von Lernen:

„Unter Lernen versteht man einen Prozess, der zu relativ stabilen Veränderungen im

Verhalten oder im Verhaltenspotenzial führt und auf Erfahrung aufbaut.“ (Zimbardo,

1995, S. 263)

„Lernen ist damit ein Prozess, der individuell und erfahrungsbezogen konstruiert. Hierbei

agiert die Person aktiv, indem sie ihre eigene Erfahrungs- und Erlebenswelt in den

Lernprozess einbringt und dabei individuell vorhandenes Wissen und Können anpasst.“

(Gabler-Wirtschaftslexikon)

Lernen stellt einen fortlaufenden, nicht abschließenden Prozess dar, in dem das Verhalten,

Wissen und Können durch die Erfahrungen angepasst und dadurch das Ergebnis verbessert

wird. Dieses Vorgehen kann einfach auf maschinelles Lernen übertragen werden. Die Maschine

verwendet Daten und Algorithmen, um neue Ergebnisse, Fähigkeiten oder Entscheidungen zu

generieren. Dabei unterscheidet man die folgenden drei Arten maschinellen Lernens.

2.1.3.1 Überwachtes Lernen

Abb. 2.5: Überwachtes Lernen.



2.1 Fachliche Grundlagen 25

Beim überwachten Lernen (s. Abbildung 2.5) müssen gelabelte, d. h. bereits klassifizierte

Daten, vorliegen (1). So können beispielsweise Bilder der Klassen Auto, Fahrradfahrer und

Fußgänger, die jeweils als solche beschriftet wurden, verwendet werden, um eine Bilderkennung

für das autonome Fahren zu ermöglichen.

„Gelabelt“ sind Daten, wenn ihnen im Vorfeld bereits eine Klasse zugeordnet wurde. Aus

einem Teil dieser gelabelten Daten erstellt der Algorithmus Regeln, die eine Zuordnung der

Daten zu den Klassen ermöglicht (2). Diese Daten werden Trainingsdaten genannt, weil der

Algorithmus damit trainiert wird, d. h. er lernt, Daten selbstständig mithilfe der gefundenen

Regeln zu klassifizieren. Da der Algorithmus bei diesem Verfahren mit Daten lernt, die vom

Datenersteller gelabelt vorgegeben wurden, spricht man von „überwachtem“ Lernen.

Die Güte (Qualität) der gefunden Regeln wird mithilfe weiterer gelabelter Daten, den soge-

nannten Testdaten, überprüft (3).

Anschließend wendet der Algorithmus seine Regeln an, um neue, ungelabelte Daten zu

klassifizieren (4).

2.1.3.2 Unüberwachtes Lernen

Abb. 2.6: Unüberwachtes Lernen.

Im Gegensatz zum überwachten Lernen stehen dem unüberwachten Lernen (s. Abbildung 2.6)

keine gelabelten Daten zur Verfügung (1). Beispielsweise liegen bei der Bilderkennung viele

Bilder von Früchten vor, eine Zuordnung zu unterschiedlichen Obstsorten ist allerdings nicht

gegeben.
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Der Algorithmus muss sich dabei die Ähnlichkeiten der Daten (Objekte) in einzelnen Merkma-

len (Attribute) zunutze machen und dadurch die Daten gruppieren, die in diesen Merkmalen

die gleichen oder ähnliche Ausprägungen (Attributwerte), also dasselbe Muster aufweisen.

Dabei geht man davon aus, dass ähnliche Daten auch ähnliche Merkmalsausprägungen haben.

Man spricht in diesem Fall von „unüberwachtem“ Lernen, weil die Daten vom Ersteller nicht

gelabelt wurden und dem Algorithmus daher keine Klassen vorgegeben wurden (2). So werden

beispielsweise alle gelben, gebogenen Früchte gruppiert und mit einem Label versehen und

alle grünen, runden Früchte ebenfalls gruppiert und mit einem anderen Label versehen.

Nachdem auf diese Weise ähnliche Daten in einzelne Gruppen zusammengefasst wurden,

müssen noch diejenigen Daten, die in keine der Gruppen passen (sogenannte Ausreißer),

identifiziert werden (3). In dem Beispiel der Früchtegruppierung wären das einzelne Bilder

exotischer Früchte.

2.1.3.3 Bestärkendes Lernen2

Abb. 2.7: Bestärkendes Lernen.

Im Gegensatz zu den beiden vorhergehenden Verfahren liegen beim bestärkenden Lernen

(s. Abbildung 2.7) keine Daten vor. Der Algorithmus erfasst hier selbstständig Informationen,

die im Hinblick auf sein Ziel relevant sind (1). So kann beispielsweise ein Serviceroboter das

2Das bestärkende Lernen wird in der Fachliteratur auch als verstärkendes Lernen oder Reinforcement Learning

bezeichnet.
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Verhalten und die Stimmung eines Kunden analysieren.

Aus seinen vorgegebenen Handlungsmöglichkeiten wählt der Algorithmus abhängig von dieser

Analyse ein Vorgehen aus (2). Der Serviceroboter kann entsprechend seiner Analyse aus einer

Vielzahl vorgefertigter Interaktionsmöglichkeiten wählen.

Wählt der Algorithmus die Alternative aus, die ihn näher an sein Ziel bringt, wird er belohnt.

Hat eine Entscheidung einen negativen Einfluss auf die Zielerreichung, wird er bestraft

(3). Durch die Antwort oder Reaktion des Kunden kann der Serviceroboter beispielsweise

feststellen, ob seine Interaktionsauswahl zielführend war oder nicht.

Durch die positiven und negativen Rückmeldungen passt der Algorithmus seine Strategie

an. Aktionen, die zum Ziel führen, werden „bestärkt“ und nicht erfolgreiche geschwächt (4).

Bei einer positiven Rückmeldung wird der Serviceroboter die Handlung in einer ähnlichen

Situation wiederholen. Reagiert der Kunde negativ auf das Verhalten des Roboters, wird diese

Handlungsalternative mit einer geringeren Wahrscheinlichkeit eingesetzt.

2.1.4 Starke und schwache Künstliche Intelligenz

Man unterscheidet gemeinhin zwischen starker und schwacher Künstliche Intelligenz. Die zum

Teil philosophische Diskussion um die Möglichkeit der Entwicklung starker KI-Systeme und

die Abgrenzung zur schwachen KI wurde in der Literatur vielfach geführt. Nach Russel &

Norvig agieren Maschinen, die schwache künstliche Intelligenz aufweisen, so, als wären sie

intelligent (s. auch Abschnitt 2.1.1). Starke künstliche Intelligenz ist dagegen durch Systeme

gekennzeichnet, die wirklich „denken [...] und nicht einfach nur Denken simulieren [...]“ (Russel

& Norvig, 2012, S. 1176), also tatsächlich intelligent sind.

Um diesen Unterschied deutlich zu machen, können zwei Gedankenexperimente herangezogen

werden. Alan Turing näherte sich bereits 1950 dieser Thematik, indem er mit dem bekannten

Turing-Test nicht etwa klären wollte, ob eine Maschine denken kann, sondern ob sie einen „Ver-

haltensintelligenztest“ (Russel & Norvig, 2012, S. 1177) bestehen könnte (s. Abschnitt 2.1.2).

Die Maschine musste daher nicht intelligent sein, sondern dem menschlichen Kommunikati-

onspartner nur menschlich und dadurch intelligent erscheinen.

Einen ähnlichen Ansatz verfolgt das Gedankenexperiment des „Chinesischen Zimmers“ von

John Searle. Dabei sitzt ein Mensch in einem verschlossenen Zimmer und beantwortet Fragen,
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die ihm in chinesischen Schriftzeichen durch einen Schlitz in der Tür gereicht werden, obwohl

er die chinesische Sprache nicht beherrscht. Als Hilfsmittel kann er dazu nur ein dickes Buch

verwenden, das für jede der eingegebenen Fragen eine passende Antwort in chinesischen

Schriftzeichen bereitstellt. Obwohl der Mensch damit weder die Sprache noch die Fragen

versteht, beantwortet er sie richtig. Bauberger sieht hier Parallelen zum Übersetzungssystem

DeepL. Dieser Algorithmus „beherrscht das Übersetzen zwischen mittlerweile mehr als zehn

Sprachen (darunter auch Chinesisch) schon recht gut, aber das bedeutet nicht, dass die

Computer, die dahinter stehen, irgendetwas verstehen“ (Bauberger, 2020, S. 130).

Eine Maschine zeigt in diesen Fällen eine Intelligenz, die bei genauer Betrachtung aber nicht

auf Verstehen, sondern auf eine entsprechende Informationsverarbeitung unter Beachtung der

möglichen Fälle zurückzuführen ist. Nach Russel & Norvig handelt es sich dabei klar um eine

schwache künstliche Intelligenz. Was benötigt dann aber eine Maschine, damit sie als starke

künstliche Intelligenz gilt?

Nach Ramge braucht die starke Künstliche Intelligenz ein Bewusstsein, das geprägt ist durch

ein Selbstbild, eigene Interessen und der Fähigkeit, sich selbstständig weiterzuentwickeln

(vgl. Ramge, 2018, S. 19). Obwohl einige Bestandteile, wie Lernen oder eine Selbstreflexion,

heute schon möglich sind, bleibt das Bild des Roboters mit menschlichen Wesenszügen und

Intelligenz, und damit der starken KI, doch weiterhin Science-Fiction.

Die Gegenbewegung stellt jedoch die Frage, was die KI denn sonst sein soll außer Informations-

verarbeitung. Dieser Frage geht das Gedankenexperiment der Philosophen Clark Glymour und

John Searle nach. Hierbei werden Schritt für Schritt alle Neuronen des menschlichen Gehirns

durch elektronische Prothesen mit der gleichen Funktionalität ersetzt, ohne die Arbeitsweise

des Gehirns zu unterbrechen (Russel & Norvig, 2012, S. 1186). Ab wann ist der Mensch nicht

mehr intelligent, sondern verarbeitet „nur“ noch Informationen? Oder bleibt das Bewusstsein

des Menschen in der Maschine erhalten, weil es ja ersetzt wird? Ist es dann doch möglich,

einer Maschine eine umfassende menschliche Intelligenz beizubringen?

All diese Fragen können bisher nicht abschließend beantwortet werden. Fest steht allerdings,

dass Maschinen für einzelne Aufgaben oft bessere Ergebnisse liefern können als Menschen.

Die Computer Watson (s. auch Abschnitt 2.1.2.1) und AlphaZero (s. auch Abschnitt 2.1.2.2)

zeigten eindrucksvoll, wie sie dem menschlichen Intellekt in ihren speziellen Spielen überlegen

waren. Trotzdem würde man ihnen nie ein Bewusstsein oder eine Intelligenz jenseits ihres
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Fachbereichs zusprechen. Bei schwacher Künstlicher Intelligenz handelt es sich daher um

„spezialisierte Systeme, die innerhalb ihres klar umgrenzten Wirkungsrahmens zu Höchst-

leistungen fähig [...]“ und „[...] in der Lage [sind,] sich selbst zu optimieren“ (Simon, 2021,

S. 43 f). Eine starke KI würde „auch in Situationen ohne genaue Faktenlage oder mit unklarem

Handlungsziel“ intelligent reagieren. Diese Generalisten gibt es allerdings (noch) nicht. Daher

sind alle bis heute vorliegenden Systeme mit künstlicher Intelligenz im Bereich der schwachen

KI anzusiedeln.

2.1.5 Geschichte der Künstlichen Intelligenz

Folgende geschichtliche Aspekte der Künstlichen Intelligenz sind von Bedeutung:

1937 Alan Turing zeigt mit dem Halteproblem Grenzen intelligenter Maschinen auf.

1943
McCulloch und Pitt modellierten die ersten künstlichen Neuronen und die Kombi-

nation mit Bestandteilen der Aussagenlogik (UND, ODER, NICHT).

1950 Turing stellt die Definition von Intelligenz von Maschinen durch den Turing-Test vor.

1955 Arthur Samuel entwickelt ein erstes lernfähiges Programm für das Spiel Dame.

1956
Der Begriff der Künstlichen Intelligenz wird auf einer Konferenz im Darthmouth

College eingeführt.

1966
Joseph Weizenbaum entwickelt den ersten Chatbot ELIZA, der Texteingaben

verstehen kann.

1972 Alain Colmerauer erfindet die Logikprogrammiersprache PROLOG.

1972 De Dombal entwickelt ein Expertensystem zur Diagnose von Bauchkrankheiten.

1986 Das System Nettalk, ein künstliches neuronales Netz, lernt zu sprechen.

1995
Vapnik entwickelt die Support-Vector-Maschine zur Klassifikation und Regression

von Objekten.

1997
Der Schachcomputer (Expertensystem) Deep Blue von IBM besiegt den Schach-

weltmeister Garri Kasparow.

2009 Erstes Google Self Driving Car fährt auf einem Freeway in den USA.
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2011
Der Quizroboter Watson (Expertensystem) besiegt zwei menschliche Mitspieler in

der Quiz-Show Jeopardy.

2011 Apples Sprachassistent Siri erscheint.

2015 Daimler stellt ersten autonomen LKW in Deutschland vor.

2016
Der Roboter AlphaGo besiegt führende Spieler im Spiel GO nur anhand der

Spielregeln und Lernen durch intensives Spielen gegen sich selbst.

2017 AlphaZero, die Weiterentwicklung von AlphaGo, kann mehrere Spiele erlernen.

2018 „Project Debater“ von IBM tritt live gegen einen Menschen im Debattier-Duell an.

2019
„Duplex“ von Google kann selbstständig Termine, z. B. für Friseur- oder Arztbesuche

vereinbaren.

2022

Der dialogbasierte Chatbot ChatGPT beeindruckt mit seinen Antworten auf Fragen

und Befehle in den unterschiedlichsten Bereichen (z. B. Programmierung, Literatur,

Pädagogik).

2.2 Didaktische Hinweise / Bezug zum Lehrplan

2.2.1 Einordnung in den LehrplanPLUS

Im LehrplanPLUS Informatik sowie spät beginnende Informatik findet sich in Jahrgangsstufe

11 folgende Kompetenzerwartung:

Die Schülerinnen und Schüler diskutieren Ansätze zur Definition des Begriffs Künstliche

Intelligenz (KI), beschreiben verschiedene Grundideen von Verfahren der KI (u. a.

maschinelles Lernen) sowie ihre Anwendungsbereiche.

In diesem Rahmen sollen die Schülerinnen und Schüler unterschiedliche Definitionen von

Künstlicher Intelligenz analysieren und gegenüberstellen. Durch die Beschäftigung mit die-

sen Ansätzen (s. Abschnitt 2.1.1) entsteht bei den Schülerinnen und Schülern ein tieferes

Verständnis von der technischen und gesellschaftlichen Bedeutung des wissenschaftlichen
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Forschungsgebiets der KI, aber auch der Herausforderung einer klaren Abtrennung und Be-

stimmung des Begriffs. Im Zuge dessen gewinnen die Schülerinnen und Schülern eine eigene

Vorstellung des Begriffs Künstliche Intelligenz.

Zusätzlich verlangt diese Kompetenz auch Kenntnisse über Verfahren der Künstlichen Intel-

ligenz und deren Anwendungsgebiete. Durch die Auseinandersetzung mit unterschiedlichen

Definitionsansätzen werden den Schülerinnen und Schülern bereits die Grundideen von Exper-

tensystemen und maschinellem Lernen bewusst (s. Abschnitt 2.1.2). Die Abgrenzung dieser

Ansätze erfolgt zum einen durch die jeweils zugrunde liegenden Funktionalität. Zum anderen

können anhand von Beispielen möglichen Einsatzgebiete abgesteckt und die Funktionsweisen

nachvollzogen werden.

Da in den weiteren Kompetenzerwartungen dieses Lernbereichs lediglich Ansätze des ma-

schinellen Lernens enthalten sind, sollte in Jgst. 11 ein Schwerpunkt auf diese gelegt werden.

Die Expertensysteme dienen hier der knappen Thematisierung einer weiteren Grundidee der

Künstlichen Intelligenz und bilden die Grundlage für eine tiefere Betrachtung in Jgst. 13

(erhöhtes Anforderungsniveau)3. Auch die Arten des maschinellen Lernens (s. Abschnitt 2.1.3)

werden vertieft erst in Jgst. 13 thematisiert und dienen der Lehrkraft hier lediglich zur Ein-

ordnung der nachfolgenden Algorithmen. Der im Lehrplan genannte Entscheidungsbaum- bzw.

𝑘-nächste-Nachbarn-Algorithmus sowie das Perzeptron verwenden Verfahren des überwachten

Lernens. Eine Thematisierung der drei Arten maschinellen Lernens ist im Unterricht der

11. Jgst. nicht erforderlich.

Die Entmystifizierung der Künstlichen Intelligenz durch die Bestimmung der Definition sowie

die Abgrenzung unterschiedlicher Ansätze bietet die fachliche Grundlage für die folgende

Kompetenzerwartung in Jgst. 11, die für Informatik und für spät beginnende Informatik gleich

lautet:

Die Schülerinnen und Schüler nehmen zu ausgewählten aktuellen Einsatzmöglichkeiten

der Künstlichen Intelligenz Stellung und bewerten Chancen und Risiken für Individuum

und Gesellschaft.

Eine Stellungnahme verlangt zum einen die fundierte fachlich-thematische Auseinandersetzung

mit den geforderten Einsatzmöglichkeiten. Diese beinhaltet beispielsweise die Funktionalität

3https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/13/informatik/erhoeht

https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/13/informatik/erhoeht
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der verwendeten Algorithmen oder die Umsetzungs- und Gestaltungsmöglichkeiten. Hierbei

können die Schülerinnen und Schüler auf die Grundideen der Verfahren künstlicher Intelligenz

zurückgreifen. Zum anderen ist für die Stellungnahme auch eine individuelle Wertung bzw.

Beurteilung von neuen Problemstellungen (s. KMK EPA Informatik4) notwendig. Auch

dafür können die Anwendungsmöglichkeiten der Grundideen sowie die Definitionsansätze der

Künstlichen Intelligenz herangezogen werden. Damit können die Schülerinnen und Schüler

Rückschlüsse auf die Auswirkungen der konkreten Systeme auf das Individuum und die

Gesellschaft ableiten. Weitere Informationen zu dieser Kompetenz finden sich in Kapitel 6.

2.2.2 Durchführung

2.2.2.1 Einstieg „Mensch-Maschine“

Um handlungsorientiert einen Eindruck von der Thematik zu erhalten und die Schülerinnen

und Schüler maschinelles Lernen erleben zu lassen, eignet sich das Spiel „Mensch, Maschine!“,

das in vielen Ausprägungen angeboten wird (z. B. online Krokodilschach von Stefan Seegerer,

https://www.stefanseegerer.de/schlag-das-krokodil/). Dabei kann die Spielfigur nur

wie der Bauer im Schach gezogen werden. Im Unterricht bietet sich eine analoge Durchführung

in Kleingruppen an. Als Grundlage für dieses Spiel wurden die Materialien der Jugendaktion

des Wissenschaftsjahres 2019 des Bundesministeriums für Bildung und Forschung verwendet.

Grundsätzlich besteht diese Unterrichtseinheit dabei aus drei Teilen:

Vorbereitung

Bevor die Schülerinnen und Schüler das Spiel in Gruppen starten können, müssen erst die

Materialien vorbereitet werden. Zur einfacheren Umsetzung wurden diese angepasst und

erweitert.

Für die Durchführung müssen für jede Gruppe folgende Unterlagen vorbereitet werden

(s. 0_WJ19_MM_Vorbereitungsanleitung.pdf im Materialordner):

4https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-

Informatik.pdf

https://www.stefanseegerer.de/schlag-das-krokodil/
https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf
https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf
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Dateiname Vorbereitung

1_WJ19_MM_Spielbrett_Teil_1_Vorderseite

2_WJ19_MM_Spielbrett_Teil_2_Rückseite

Spielfeld Vorder- und Rückseite

laminiert

3_WJ19_MM_Spielfiguren

Spielfiguren ausgedruckt, ausgeschnitten

und laminiert oder alternative

Spielsteine

4_WJ19_MM_Situationskarten
Situationskarten klein ausgedruckt,

ausgeschnitten und laminiert

5_WJ19_MM_Farbkarten optimiert
Farbkarten klein ausgedruckt,

ausgeschnitten und laminiert

6_Zugübersicht A4 optimiert
Ausgedruckt, ausgeschnitten und

laminiert

7_Ergebniszettel DIN A4 Tabelle Ausgedruckt

8_Spielablauf A4 optimiert Ausgedruckt und laminiert

Das Spiel „Mensch, Maschine!“ wird zwischen den Rollen Mensch und Maschine auf einem

Spielfeld mit 3 mal 3 Feldern gespielt. Dabei sollte die Rolle Maschine in einen Maschine-

Zugauswähler und einen Maschine-Zugausführer aufgeteilt werde. Der Mensch startet

immer mit der mittleren oder von ihm aus rechten Figur (s. Abbildung 2.8, (1)).

(1) (2) (3)

Erster Zug des
Menschen

Maschine-
Zugauswähler
gibt mögliche

Züge an

Maschine-
Zugausführer
wählt zufällig

den Zug rot aus

Abb. 2.8: Spielverlauf „Mensch, Maschine!“.

Diese Einschränkung erfolgt hier, um die Anzahl der möglichen Spielzüge zu beschränken und

damit in weniger Spieldurchgängen den Lerneffekt der Maschine zu erkennen. Aufgrund der
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Symmetrie des Spielfeldes hat diese Einschränkung keine Auswirkungen auf den grundsätzli-

chen Spielverlauf. Vor jedem Spielzug überprüft der Maschine-Zugauswähler, ob der Mensch

oder die Maschine gewonnen hat. Wenn nicht, sucht er die entsprechende Situationskarte aus

(2) und lässt den Maschine-Zugführer (3) einen möglichen Zug zufällig bestimmen.

Der Gegner ist besiegt, wenn ...

• ... alle seine Figuren aus dem Spiel geworfen wurden (diagonal

wie die Bauern beim Schach),

• ... er am Zug ist, aber mit allen Figuren für weitere Bewegungen

blockiert ist oder

• ... man mit einer eigenen Figur die Spielfeldseite des Gegners

erreicht.

Verliert die Maschine, so wird der letzte gemachte Zug aus

der Situationskarte gestrichen und kann in den nächsten

Spielrunden nicht mehr verwendet werden. Eine detaillierte

Spielanleitung findet sich im Dokument 8_Spielablauf A4

optimiert.pdf, den möglichen Ablauf einer ersten Spielrunde

in Mensch_Maschine_erste_Spielrunde.pptx. Der Erfolg der

Durchführung des Spiels hängt stark vom Verständnis der Spiel-

regeln ab. Daher empfiehlt es sich, einen Spieldurchgang mit

einer Schülergruppe und einem Satz Material vorzuführen oder

die Präsentation Mensch_Maschine_erste_Spielrunde.pptx zu

verwenden.

Abb. 2.9: Sieg-

und Spielstellungen

aus dem „Mensch-

Maschine-Spiel“.

Dabei sollte bei der Vorstellung besonders auf die Handlungsanweisungen der einzelnen Rollen

eingegangen werden. Nur bei einer strikten Befolgung der Anweisungen durch die Schülerinnen

und Schüler kann das Spiel erfolgreich abgeschlossen werden.

In den Unterlagen findet sich auch die Light-Variante des Spiels, die weniger Vorbereitungs-

aufwand erfordert.
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Durchführung

Nach einer gemeinsamen Erklärung spielen die Schülerinnen und Schüler in Gruppen von drei

Personen (Mensch, Maschine-Zugauswähler und Maschine-Zugausführer) selbstständig.

Die Lehrkraft steht für Fragen bereit und überprüft stichpunktartig die Einhaltung der

Regeln. Bei Fehlern im Ablauf sollte das Spiel neu gestartet und die Zugübersicht und die

Ergebnistabelle neu ausgeteilt werden. Das Spiel ist beendet, wenn die Ergebnisübersicht

(18 Spielrunden) vollständig ausgefüllt ist.

Reflexion

Die Analyse der Ergebnisübersicht sollte ergeben, dass die Anzahl der Siege des menschlichen

Spielers abnehmen, da die Maschine lernt, besser zu spielen. Aber wie funktioniert das? Beim

Spiel „Mensch, Maschine!“ kommt eine Form des bestärkenden Lernens (s. Abschnitt 2.1.3)

zum Einsatz. Die Daten stellen hier die Spielrunden mit den gewählten Spielzügen und daraus

resultierenden Ergebnissen dar. Wichtig ist auch die Qualität des menschlichen Spielers.

Verliert die Maschine nicht, entwickelt sie sich auch nicht weiter. Verliert sie aber, wird

jeweils der letzte Zug, der in direkter Folge zum Verlieren geführt hat, eliminiert, d. h. aus der

Ergebnisübersicht gestrichen. Dies stellt eine negative Bestärkung (Bestärkung erfolgreicher

Handlung findet hier nicht statt) dar, da der Zug in Zukunft mit Sicherheit nicht mehr

angewendet wird. Die Maschine lernt auf diese Weise besser zu spielen.

Das Spiel „Mensch, Maschine!“ nutzt bestärkendes Lernen, um die Maschine zu trainieren.

Bei der Durchführung des Spiels steht das Erleben, wie eine Maschine lernt, im Vordergrund.

Eine begriffliche Einordung in die Arten des maschinellen Lernens ist im Unterricht nicht

erforderlich. Hingegen bietet sich an dieser Stelle eine kurze Abgrenzung von maschinellem

Lernen zu Expertensystemen (s. Abschnitt 2.1.2) an.

Mithilfe der Erkenntnisse aus diesem Spiel kann anschließend die Frage nach der Intelligenz

dieser Maschine gestellt und damit auf die möglichen Definitionen des Begriffs der Künstlichen

Intelligenz übergeleitet werden (s. Abschnitt 2.2.2.2). Alternativ können auch anhand des

„Lernens“ im Spiel „Mensch, Maschine!“ die Grundideen von Verfahren der KI thematisiert

werden (s. Abschnitt 2.2.2.3).
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2.2.2.2 Alternative 1: Ansätze zur Definition des Begriffs Künstliche Intelligenz

In vielen Definitionen (z. B. Zweig (2019), Rich (1983), Kaplan & Haenlein (2019) in Ab-

schnitt 2.1.1.2) finden die Schülerinnen und Schüler die Erkenntnisse aus dem Spiel „Mensch,

Maschine!“ wieder. Die Frage, ob sie den Maschinen-Gegner aus diesem Spiel als intelligent

einschätzen, leitet direkt zum Problem über, dass der Begriff Künstliche Intelligenz nicht ein-

deutig definiert werden kann. Zuerst könnte mit den Ansätzen der Definition der „Intelligenz“

(s. Abschnitt 2.1.1.1) das Problem der genauen Abgrenzung besprochen werden. Aufbauend

darauf kann mittels der unterschiedlichen Definitionsansätze von „Künstlicher Intelligenz“

von den Schülerinnen und Schülern eine eigene Definition verfasst werden. Diese kann ge-

nutzt werden, um für aktuelle Anwendungen (z. B. ChatGPT, Thispersondoesnotexist.com,

DeepL) zu bestimmen, ob bzw. wie intelligent diese erscheinen. Obwohl eine Zuordnung dieser

Anwendungen nicht immer möglich ist, können damit sowohl die Arten des maschinellen

Lernens (s. Abschnitt 2.1.3) als auch die Abgrenzung zu Expertensystemen angesprochen

werden. Dabei sollte darauf hingewiesen werden, dass in Jahrgangsstufe 11 nur Verfahren des

überwachten Lernens thematisiert werden. Ein Verweis auf Jahrgangsstufe 13 bietet sich an

dieser Stelle an. Abschließend kann mit Rückgriff auf die verfassten Definitionen die starke

von der schwachen Künstlichen Intelligenz (s. Abschnitt 2.1.4) abgegrenzt und mithilfe des

Turing-Tests (s. Abschnitt 2.1.1.2) weiter diskutiert werden. Eine abschließende Einschätzung

der Schülerinnen und Schüler zur Möglichkeit der Entwicklung eines Systems mit starker

Künstlicher Intelligenz kann beispielsweise in Form einer Meinungslinie umgesetzt werden.

Dabei zieht die Lehrkraft eine Linie, an deren Enden sich jeweils die Endpositionen „starke KI

ist umsetzbar“ und „starke KI ist nicht umsetzbar“ befinden. Die Schülerinnen und Schüler

positionieren sich ihrer persönlichen Meinung entsprechend entlang der Linie. Je weiter sie von

einer Endposition entfernt stehen, desto weniger stimmen sie dieser Aussage zu und umgekehrt.

Anschließend begründen die Schülerinnen und Schüler ihre Positionierung. Die Lehrkraft wählt

dabei Vertreterinnen und Vertreter unterschiedlicher Meinungen aus. Durch diese Methode

erfolgt eine individuelle Reflexion des Themas sowie eine visuelle Verdeutlichung der Meinung

innerhalb der Klasse, die für die weitere Erarbeitung genutzt werden kann.
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2.2.2.3 Alternative 2: Grundideen von Verfahren der Künstlichen Intelligenz sowie ihrer

Anwendungsbereiche

Das im Spiel „Mensch, Maschine!“ erlebte „Verbessern“ kann auch in vielen Definitionen (z. B.

Europäisches Parlament (2020), Kaplan & Haenlein (2019) in Abschnitt 2.1.1.2) wiederge-

funden werden. Dabei kennen die Schülerinnen und Schüler „Lernen“ aber nicht nur aus den

Erfahrungen des Spiels, sondern auch aus ihrem eigenen Leben. Mithilfe dieser Definitionen

und konkreten Anwendungsbeispielen können sowohl die Arten des maschinellen Lernens

(s. Abschnitt 2.1.3) als auch die Abgrenzung zu den Expertensystemen (s. Abschnitt 2.1.2)

angesprochen werden. Dabei sollen die Schülerinnen und Schüler erkennen, in welchen Situa-

tionen maschinelles Lernen eingesetzt wird und ggf. bereits Chancen und Risiken ableiten.

Dazu können Beispiele wie die Radikalisierung von Robotern auf Social-Media-Plattformen5

herangezogen werden. Eine detaillierte Betrachtung der Auswirkungen auf Individuen und

die Gesellschaft erfolgt allerdings erst am Ende des Lernbereichs. Aufbauend auf diesem

Ausblick bietet sich die Abgrenzung von starker und schwacher künstlicher Intelligenz (s. Ab-

schnitt 2.1.4) an. Abschließend können die Schülerinnen und Schüler beispielswiese mithilfe

einer Meinungslinie abschätzen, ob sie die Entwicklung eines Systems mit starker Künstlicher

Intelligenz als möglich erachten.

5https://www.sueddeutsche.de/digital/chatbot-blender-facebook-1.4922049

https://www.sueddeutsche.de/digital/chatbot-blender-facebook-1.4922049
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3.1 Fachliche Grundlagen

3.1.1 Überblick

Entscheidungsbäume sind ein etabliertes Modell des überwachten maschinellen Lernens. Sie

werden sowohl für Klassifikations- als auch Regressionsaufgaben verwendet. Der Fokus dieser

Handreichung liegt auf der Verwendung von Entscheidungsbäumen zur Klassifikation, d. h.

mithilfe des Entscheidungsbaums sollen Daten klassifiziert, also bestimmten Labeln zugeordnet

werden.

Schuppenfarbe

Muster Bauchfarbe

friedlich Bauchfarbe feindselig friedlich

feindseligfriedlich

blau orange

weiß schwarzohne gepunktet

weiß schwarz

Abb. 3.1: Der Fisch wird gemäß dem Entscheidungsbaum als friedlich eingestuft. Die Abbildung

visualisiert dabei den schrittweisen Ablauf der Klassifikation.

Ein Entscheidungsbaum besteht aus Knoten und Kanten, wobei die inneren Knoten Fragen

oder (Entscheidungs-)Regeln repräsentieren, die auf ein bestimmtes Merkmal (Attribut) des

zu klassifizierenden Datenpunkts (Objekts) angewendet werden. Die Kanten repräsentieren

die möglichen Antworten auf diese Frage bzw. die möglichen Anwendungsfälle der Regel und

symbolisieren somit die unterschiedlichen Attributwerte, wobei diese ggf. auch gruppiert sein

können. Im Falle eines binären Entscheidungsbaums gibt es zu jedem inneren Knoten zwei

ausgehende Kanten, z. B. eine „Ja“-Kante und eine „Nein“-Kante. Durch fortlaufendes (rekur-

sives) Weiterleiten des zu klassifizierenden Datenpunkts entlang der entsprechenden Kanten
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wird schließlich ein Blattknoten erreicht. Die Blattknoten repräsentieren dabei die endgültige

Klassifizierung des Datenpunkts. Abbildung 3.1 visualisiert den Ablauf der Klassifizierung

eines Datenpunkts anhand eines Entscheidungsbaums.

Ziel des hier vorgestellten Verfahrens des maschinellen Lernens ist es, auf Grundlage bereits gela-

belter Daten (Trainingsdaten) einen Entscheidungsbaum zu erstellen, mit dem neue Daten mög-

lichst zuverlässig klassifiziert werden können. Dazu dient der Entscheidungsbaum-Algorithmus,

der auf Grundlage der Trainingsdaten und bestimmter Kriterien (s. Abschnitt 3.1.3.1) zu-

nächst ein geeignetes Attribut (Frage / Regel) auswählt, das die vorhandenen Trainingsdaten

in zwei oder mehrere (disjunkte) Mengen aufteilt. Für diese Teilmengen wählt der Algorithmus

jeweils wieder ein geeignetes Attribut, um sie weiter aufzuteilen. Dieses Vorgehen wird nun für

die entstandenen Teilmengen rekursiv wiederholt, bis z. B. eine zuvor festgelegte Baumtiefe

erreicht ist oder bis alle Daten, die durch einen bestimmten (Blatt-)Knoten repräsentiert

werden, dasselbe Label besitzen (s. Abschnitt 3.1.3.2).

Entscheidungsbäume können auf eine Vielzahl von Szenarien angewendet werden und sind

leicht zu visualisieren und zu interpretieren. Bei diesem Verfahren handelt es sich jedoch um

ein heuristisches Vorgehen, d. h. es gibt keine Garantie, dass der „beste“ bzw. überhaupt

„ein guter“ Entscheidungsbaum gefunden wird. Es ist somit unerlässlich, den erhaltenen

Entscheidungsbaum anhand von Testdaten auf seine „Vorhersagequalität“ hin zu überprüfen

(s. Abschnitt 3.1.4).

3.1.2 Trainings-, Validierungs- und Testdaten

Als Verfahren des überwachten maschinellen Lernens benötigt der Entscheidungsbaum-

Algorithmus Trainingsdaten, anhand derer das Modell, also der Entscheidungsbaum, generiert

wird. Wie bereits im vorangegangenen Abschnitt erwähnt, handelt es sich bei dem Verfahren

nur um eine Heuristik und das generierte Modell muss anhand weiterer gelabelter Daten

auf seine Güte, d. h. die „Vorhersagequalität“ des Entscheidungsbaums getestet werden. Eine

typische Fehlvorstellung ist es, hier dieselben Daten zu verwenden, anhand derer das Modell

erstellt wurde. Da das Modell genau auf diesen Daten trainiert wurde, kann es diese in der

Regel zuverlässig klassifizieren. Daraus kann man jedoch nicht schließen, dass neue, ihm in

der Trainingsphase unbekannte Daten ebenso zuverlässig klassifiziert werden können. Daher

ist es von großer Bedeutung, das Modell mit weiteren bereits gelabelten Daten (Testdaten)
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zu bewerten, die nicht in der Trainingsphase verwendet wurden, um eine Einschätzung der

allgemeinen Zuverlässigkeit des Modells bei der Klassifizierung zu bekommen.

Noch bevor der Entscheidungsbaum getestet wird, findet üblicherweise eine Phase der Opti-

mierung statt. Hierbei kommt ein weiterer Satz gelabelter Daten (Validierungsdaten) zum

Einsatz. Im Zuge der Optimierung kann insbesondere eine Überanpassung (overfitting) des

Entscheidungsbaums auf die Trainingsdaten erkannt werden. Eine Überanpassung liegt vor,

wenn das Modell so sehr auf die Trainingsdaten zugeschnitten ist, dass neue Daten weniger

zuverlässig klassifiziert werden als mit einem generalisierten Modell, das in Bezug auf die

Trainingsdaten weniger spezifisch ist. Das Model hat die Trainingsdaten sozusagen „auswendig

gelernt“ und kann andersartige Datenobjekte nicht zuverlässig klassifizieren. Um den trainier-

ten Entscheidungsbaum zu vereinfachen und damit zu generalisieren, können beispielsweise zu

spezielle Knoten und / oder Zweige entfernt werden. Man spricht in diesem Zusammenhang

von Pruning.

Zusammengefasst benötigt man Daten mit bekannten Labeln für folgende Zwecke: für das

Trainieren des Modells (Trainingsdaten), ggf. für das Optimieren bzw. Validieren des trai-

nierten Modells (Validierungsdaten) und für das Testen des Modells (Testdaten). Man

muss deshalb die anfangs verfügbaren gelabelten Daten in zwei bzw. drei Teile aufteilen, wobei

es keine feste Regel gibt, in welchem Verhältnis die Daten aufgeteilt werden sollten. Es ist

gängige Praxis, etwa 70 % der Daten als Trainingsdaten zu verwenden und die restlichen

Daten ungefähr gleichmäßig in Validierungs- und Testdaten aufzuteilen.

3.1.3 Erstellung des Entscheidungsbaums anhand der Trainingsdaten

Um den Entscheidungsbaum zu erstellen, muss der Algorithmus zunächst eine „beste“ Fra-

ge / Regel auswählen, um den Wurzelknoten in zwei oder mehrere Kindknoten aufzuteilen.

Als Entscheidungsregel kommt die Einordnung eines Datenobjekts gemäß der Attributwerte

eines seiner Attribute infrage. Je nach Anzahl der unterschiedlichen Attributwerte ergibt

sich folglich eine Aufteilung in die Kindknoten. Dabei können auch mehrere Ausprägungen

gruppiert werden, was gerade bei nicht diskreten Attributwerten sinnvoll ist. Es muss an

dieser Stelle geklärt werden, welches das „beste“ bzw. „wichtigste“ Attribut ist, nach dessen

Attributwerten eine Datenmenge aufgeteilt werden soll.

Im folgenden Beispiel sollen unterschiedliche Figuren mit den Merkmalen Form (Kreis / Dreieck),
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Streifen (ja / nein) und Beschriftung KI (ja / nein) klassifiziert werden (s. linke Grafik in

Abb. 3.2), wobei von Interesse ist, ob die Figuren grün oder rot sind. Die Zuordnung einer

Figur zu einer der beiden Klassen erfolgt hierbei über ein grünes bzw. rotes Label (s. rechte

Grafik in Abb. 3.2). Es liegen folgende gelabelte Trainingsdaten vor:

Abb. 3.2: Als Trainingsdaten werden Daten mit den Merkmalen Form, Streifen und Beschriftung

KI betrachtet. Die beiden Abbildungen zeigen die Trainingsdaten ohne Label (links) und mit Label

(rechts), welche durch die Farben grün und rot repräsentiert werden.

Je nachdem, welches Attribut als erste Entscheidungsregel ausgewählt wird, ergeben sich

folgende Aufteilungen der Trainingsdaten:

Form

Kreis Dreieck

Streifen

Ja Nein

Beschriftung KI

Ja Nein

Abb. 3.3: Aufteilung der Trainingsdaten nach den drei möglichen Merkmalen Form bzw. Streifen

bzw. Beschriftung KI.

Der Algorithmus entscheidet sich dabei für das Attribut, durch dessen Attributwerte die

Datenobjekte in Untergruppen mit einem möglichst großen Informationsgewinn aufgeteilt

werden, d. h. nach der Aufteilung sollte man die einzelnen Datenobjekte aus den Trainingsda-

ten mit einer höheren Wahrscheinlichkeit dem passenden Label zuordnen können als vor dem

Aufteilen. Man betrachtet hierzu den Informationsgehalt der Ausgangsmenge und den Infor-

mationsgehalt nach dem Aufteilen der Ausgangsmenge in Teilmengen. Der Informationsgewinn

wird dabei als Differenz aus Informationsgehalt vor und nach dem Aufteilen definiert. Zur
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Messung des Informationsgehalts einer Datenmenge gibt es in Bezug auf Entscheidungsbäume

drei gängige Verfahren (Split-Kriterien): die Fehlklassifikationsrate, die Entropie und die

Gini-Impurity (vgl. Rutkowski et al., 2020). Diese drei Verfahren werden in den nächsten

Unterabschnitten anhand von Beispielen illustriert.

3.1.3.1 Split-Kriterien

3.1.3.1.1 Fehlklassifikationsrate

Wie der Name schon erahnen lässt, betrachtet man bei

diesem Verfahren die Wahrscheinlichkeit, mit der man

Daten einer Menge fehlklassifiziert, d. h. dem falschen

Label zuordnet. Zur Bestimmung des Informationsge-

haltes vor dem Aufteilen müsste nebenstehender Menge

entweder das Label grün oder rot zugewiesen werden. Abb. 3.4: Gelabelte Trainingsdaten.

Da in der Menge jeweils zehn rote und grüne Datenobjekte vorhanden sind, macht man in

diesem Fall unabhängig von der Wahl des Labels zu 10
20 einen Fehler, d. h. der Informationsgehalt

vor dem Aufteilen beträgt 10
20 = 0,5.

Nun betrachtet man die Fehlerwahrscheinlichkeiten

nach dem Aufteilen der Menge der Datenobjekte

bzgl. des Attributs Beschriftung KI. In der linken

Teilmenge mit Attributwert „ja“ befinden sich sie-

ben Datenobjekte mit grünem Label. Wenn man

dieser Menge das Label grün zuweist, macht man

in 0
7 der Fälle einen Fehler. In der rechten Menge

befinden sich drei grüne und zehn rote Daten. Da

sich mehr rote als grüne Daten in der Menge befin-

den, weist man dieser das Label rot zu und macht

dann in 3
13 der Fälle einen Fehler.

Beschriftung KI

Ja Nein

Abb. 3.5: Aufteilung der Trainingsdaten

gemäß dem Attribut Beschriftung KI.

Diese beiden Fehlerraten müssen nun noch mit dem jeweiligen Anteil der Daten an der
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Ausgangsmenge gewichtet werden (gewichtetes Mittel), um ein Maß für den Informationsgehalt

nach dem Aufteilen zu erhalten:

7
20︸︷︷︸

Gewichtung

· 0
7︸︷︷︸

Fehlerrate

+ 13
20︸︷︷︸

Gewichtung

· 3
13︸︷︷︸

Fehlerrate

=
3
20 = 0,15

Es ergibt sich durch das Aufteilen einer Datenmenge 𝑋 gemäß dem Attribut Beschriftung

KI also ein Informationsgewinn IG𝐹 unter Verwendung der Fehlklassifikationsrate 𝐹 von:

IG𝐹 (𝑋,Beschriftung KI) = 10
20︸︷︷︸

Informationsgehalt
vor dem Aufteilen

− 3
20︸︷︷︸

Informationsgehalt
nach dem Aufteilen

=
7
20 = 0,35

Das Verfahren lässt sich auf das Aufteilen einer Datenmenge in mehr als zwei Teilmengen

übertragen. Man berechnet hierzu eine gemeinsame (gewichtete) Fehlerrate der Teilmengen

und subtrahiert diese anschließend von der Fehlerrate der Ausgangsmenge.

Anmerkung

Betrachtet man die Berechnung der gewichteten Fehlerrate nach dem Aufteilen, erkennt

man, dass sich die Anzahl der Elemente in den jeweiligen Teilmengen „kürzt“:

7
20 · 0

7 + 13
20 · 3

13 =
3
20 = 0,15

Es reicht deshalb aus, die Anzahl der Fehler vor dem Aufteilen und die Anzahl der Fehler

nach dem Aufteilen zu betrachten. Vor dem Aufteilen erhält man unabhängig von der

Wahl des Labels 10 Fehler, nach dem Aufteilen in der linken Teilmenge 0 und in der

rechten Teilmenge 3, also insgesamt 3 Fehler. Es ergibt sich somit ein Informationsgewinn

von

„10 Fehler − 3 Fehler = 7 Fehler“

Der Wert „7 Fehler“ als Informationsgewinn bedeutet dabei, dass man durch das Aufteilen

7 Fehler weniger macht, als dies vor dem Aufteilen der Fall war.
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3.1.3.1.2 Entropie

Ein anderes Maß für den Informationsgehalt einer Menge ist die Entropie. Diese misst

anschaulich gesprochen die Unordnung in einer Menge. Für eine Menge 𝑋, in der Daten mit

𝑘 verschiedenen Labeln mit der jeweiligen relativen Häufigkeit 𝑝 𝑗 ( 𝑗 = 1, . . . ,𝑘) vorkommen,

wird die Entropie 𝐸 wie folgt berechnet:

𝐸 (𝑋) = −
𝑘∑︁
𝑗=1

𝑝 𝑗 · log2(𝑝 𝑗)

Gibt es in der Menge 𝑋 nur Daten mit zwei verschiedenen Labeln (wie in obigem Beispiel

grün und rot), vereinfacht sich die Formel zu:

𝐸 (𝑋) = − (𝑝1 · log2(𝑝1) + 𝑝2 · log2(𝑝2))

Hierzu wird wieder das obige Beispiel betrachtet:

Beschriftung KI

𝐸 (𝑋) = −
(
10
20 · log2

(
10
20

)
+ 10

20 · log2

(
10
20

))
= − (0,5 · log2(0,5) + 0,5 · log2(0,5))

= 1

𝐸 (𝑋1) = −
(
7
7 · log2

(
7
7

))
= 0

𝐸 (𝑋2) = −
(

3
13 · log2

(
3
13

)
+ 10

13 · log2

(
10
13

))
≈ 0,78

Ja Nein

Abb. 3.6: Berechnung der Entropien der Ausgangsmenge 𝑋 bzw. der Teilmengen 𝑋1 und 𝑋2 nach der

Aufteilung der Daten hinsichtlich des Attributs Beschriftung KI.

Der Informationsgewinn IG𝐸 hinsichtlich des Attributs Beschriftung KI berechnet sich
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analog zum Informationsgewinn IG𝐹 aus Abschnitt 3.1.3.1.1 aus der Differenz der Entropie

der Ausgangsmenge 𝑋 und der Summe der gewichteten Entropien der Teilmengen 𝑋1 und 𝑋2:

IG𝐸 (𝑋,Beschriftung KI) = 𝐸 (𝑋)︸︷︷︸
Informationsgehalt
vor dem Aufteilen

−
(

7
20 · 𝐸 (𝑋1) +

13
20 · 𝐸 (𝑋2)

)
︸                              ︷︷                              ︸

Informationsgehalt
nach dem Aufteilen

≈ 1 − 7
20 · 0 − 13

20 · 0,78 ≈ 0,49

3.1.3.1.3 Gini-Impurity

Das dritte Maß für den Informationsgehalt einer Menge, das in der Handreichung betrachtet

wird, ist die Gini-Impurity. Für eine Menge 𝑋, in der Daten mit 𝑘 verschiedenen Labeln

mit der jeweiligen relativen Häufigkeit 𝑝 𝑗 ( 𝑗 = 1, . . . ,𝑘) vorkommen, wird die Gini-Impurity 𝐺

wie folgt berechnet:

𝐺 (𝑋) = 1 −
𝑘∑︁
𝑗=1

𝑝2
𝑖

Kommen in der Menge nur Daten mit zwei verschiedenen Labeln vor (wie in obigem Beispiel

grün und rot), vereinfacht sich die Formel zu:

𝐺 (𝑋) = 1 − 𝑝2
1 − 𝑝2

2

Hierzu wird wieder das obige Beispiel betrachtet (s. Abbildung 3.7).

Der Informationsgewinn IG𝐺 hinsichtlich des Attributs Beschriftung KI berechnet sich

analog zum Informationsgewinn IG𝐹 bzw. IG𝐺 aus den Abschnitten 3.1.3.1.1 bzw. 3.1.3.1.2

aus der Differenz der Gini-Impurity der Ausgangsmenge 𝑋 und der Summe der gewichteten

Werte der jeweiligen Gini-Impurity der Teilmengen 𝑋1 und 𝑋2:

IG𝐺 (𝑋,Beschriftung KI) = 𝐺 (𝑋)︸︷︷︸
Informationsgehalt
vor dem Aufteilen

−
(

7
20 · 𝐺 (𝑋1) +

13
20 · 𝐺 (𝑋2)

)
︸                              ︷︷                              ︸

Informationsgehalt
nach dem Aufteilen

≈ 0,5 − 7
20 · 0 − 13

20 · 0,36 ≈ 0,27
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Beschriftung KI

𝐺 (𝑋) = 1 −
(
10
20

)2
−

(
10
20

)2

= 0,5

𝐺 (𝑋1) = 1 −
(
7
7

)2

= 0
𝐺 (𝑋2) = 1 −

(
3
13

)2
−

(
10
13

)2

≈ 0,36

Ja Nein

Abb. 3.7: Berechnung der Gini-Werte der Ausgangsmenge bzw. der Teilmengen nach der Aufteilung

der Daten hinsichtlich des Attributs Beschriftung KI.

Exkurs (Was steckt hinter der Formel der Gini-Impurity?)

Die Formel der Gini-Impurity betrachtet den Feh-

ler, den man macht, wenn man sich zufällig – aber

unter Berücksichtigung der relativen Häufigkeiten

des Vorkommens der Label – für ein bestimmtes

Label entscheidet. Für nebenstehendes Beispiel

mit den zwei unterschiedlichen Labeln grün und

rot gilt:

Abb. 3.8: Datenmenge für die Berech-

nung der Gini-Impurity.

In der Menge befinden sich drei Elemente mit grünem und zehn Elemente mit rotem Label.

Man würde sich aus diesem Grund also zu 3
13 für das grüne und zu 10

13 für das rote Label

entscheiden. Mit welcher Wahrscheinlichkeit würde man für die beiden Entscheidungen

jeweils ein Element falsch klassifizieren?

• Wenn man sich für das grüne Label entscheidet, macht man in 10
13 der Fälle einen

Fehler bei der Klassifikation
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• Wenn man sich für das rote Label entscheidet, macht man in 3
13 der Fälle einen

Fehler bei der Klassifikation

Diesen Prozess kann man auch gut in einem Baumdiagramm visualisieren. Die Ereignisse

𝐸𝐺 bzw. 𝐸𝑅 stehen dabei für die Entscheidung für das grüne bzw. rote Label, die

Ereignisse 𝑍𝐺 bzw. 𝑍𝑅 dafür, dass ein Element mit grünem bzw. rotem Label ausgewählt

wurde:

𝐸𝑅

𝑍𝑅
10
13 · 10

13
10

13

𝑍𝐺
10
13 · 3

13
3
1310

13

𝐸𝐺

𝑍𝑅
3
13 · 10

13
10

13

𝑍𝐺
3
13 · 3

13
3
13

3
13

Der Gesamtfehler bei diesem Vorgehen ist somit

3
13 · 10

13 + 10
13 · 3

13 = 2 · 3
13︸︷︷︸
=:𝑝1

· 10
13︸︷︷︸
=:𝑝2

= 2𝑝1𝑝2

Ausgehend von dem Zusammenhang 𝑝1 + 𝑝2 = 1 erhält man durch Quadrieren beider

Seiten und der Anwendung der 1. binomischen Formel:

(𝑝1 + 𝑝2)2 = 1 ⇐⇒ 𝑝2
1 + 2𝑝1𝑝2 + 𝑝2

2 = 1 ⇐⇒ 2𝑝1𝑝2 = 1 − 𝑝2
1 − 𝑝2

2︸        ︷︷        ︸
Formel für die Gini-Impurity

für zwei Label

3.1.3.1.4 Beurteilung der Split-Kriterien

In den vorangegangenen drei Abschnitten wurden drei verschiedene Maße vorgestellt, um

den Informationsgehalt einer Menge angeben zu können. Doch wie wirkt sich die Wahl des

Split-Kriteriums auf die Erstellung des Entscheidungsbaums aus? Zur Beantwortung dieser

Frage lohnt sich ein Blick auf die Funktionsgraphen der drei Maße im Hinblick auf eine
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Datenmenge mit zwei unterschiedlichen Labeln. Hierbei sticht zunächst ins Auge, dass die

Entropie Werte im Intervall [0; 1] und die Fehlklassifikationsrate sowie die Gini-Impurity

Werte im Intervall [0; 0,5] annehmen. Um die Maße noch besser vergleichen zu können, wird

die Entropie mit dem Faktor 0,5 skaliert (blau-gestrichelte Linie).

Wahrscheinlichkeit 𝑝 für ein

Label (bei zwei möglichen)

Funktionswert des gewählten Splitkriteriums

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropie

Skalierte Entropie

Gini-Impurity

Fehlklassifikationsrate

Abb. 3.9: Funktionsgraphen der Entropie, Gini-Impurity und Fehlklassifikationsrate im Hinblick auf

eine Datenmenge mit zwei unterschiedlichen Labeln (in Anlehnung an (Rutkowski et al., 2020, S. 65)).

Man sieht, dass alle drei Maße den größten Wert für 𝑝 = 0,5 annehmen, der dann auftritt,

wenn in der Datenmenge für jedes der beiden Label dieselbe Anzahl an Daten enthalten

ist, was gleichzeitig den größtmöglichen „Grad der Unordnung“ in der Menge darstellt.

Die Graphen für die skalierte Entropie und Gini sind sehr ähnlich und unterscheiden sich

kaum. Wirft man einen Blick auf Berechnungssimulationen, stellt man fest, dass das Gini-

Kriterium hinsichtlich der Laufzeit deutlich schneller als das Entropie-Kriterium ist, da es

deutlich weniger rechenintensiv ist. Dafür sind die Klassifikationsergebnisse des erhaltenen

Entscheidugnsbaums bei der Wahl des Entropie-Kriteriums etwas besser, wobei fraglich

ist, ob sich der Zeitaufwand in Bezug auf das erhaltene Ergebnis tatsächlich lohnt (vgl.

https://quantdare.com/decision-trees-gini-vs-entropy/).

Während sich die Entropie und die Gini-Impurity kaum unterscheiden, gibt es doch deutliche

Unterschiede zwischen den beiden Maßen und der Fehlklassifikationsrate. Während sowohl

https://quantdare.com/decision-trees-gini-vs-entropy/
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Gini als auch die Entropie streng konkave Funktionen sind, ist die Fehlklassifikationsrate

abschnittsweise linear (Rutkowski et al., 2020, S. 81). Dies hat bei manchen Berechnungen

starke Auswirkungen auf die Berechnung des Informationsgewinns, wie folgendes Beispiel

illustriert:

20 40

14 21 6 19

14 0 0 21 0 196 0

Abb. 3.10: Visualisierung der Anteile der grün bzw. rot gelabelten Daten in den jeweiligen Knoten

eines Entscheidungsbaums.

Es werden wieder gelabelte Daten mit grünem und rotem Label betrachtet. In den farbigen

Bereichen jedes Knotens ist jeweils die Anzahl der Daten angegeben. So befinden sich in

der Ausgangsdatenmenge 20 grün und 40 rot gelabelte Trainingsdaten. Man sieht, dass sich

diese Daten insgesamt perfekt aufteilen lassen und vier Blattknoten mit jeweils einheitlich

gelabelten Daten entstehen. Betrachtet man nun die Berechnung des Informationsgewinns für

das Aufteilen der Ausgangsmenge mithilfe der Fehlklassifikationsrate, ergibt sich:

IG𝐹 =
20
60 −

(
35
60 · 14

35 + 25
60 · 6

25

)
=

20
60 − 20

60 = 0

Das Kriterium der Fehlklassifkationsrate berechnet hier einen Informationsgewinn von 0,

d. h. die Ausgangsmenge würde – je nach Definition des Algorithmus – unter Umständen

nicht weiter aufgeteilt werden. Dies geschieht, obwohl insgesamt eine perfekte Separierung der

Trainingsdaten hinsichtlich der betrachteten Label möglich wäre.

Verwendet man hier die Gini-Impurity, erhält man als Informationsgewinn:

IG𝐺 =

(
1 −

(
20
60

)2
−

(
40
60

)2
)
−

[
35
60 ·

(
1 −

(
14
35

)2
−

(
21
35

)2
)
+ 25

60 ·
(
1 −

(
6
25

)2
−

(
19
25

)2
)]

≈ 0,01

Das Gini-Kriterium (und analog auch das Entropie-Kriterium) ermittelt also einen (wenn

auch kleinen) Informationsgewinn und die Ausgangsdatenmenge wird weiter aufgeteilt.
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Woran liegt es, dass Gini oder die Entropie noch einen Informationsgewinn ermitteln können,

wohingegen die Fehlklassifikationsrate keinen mehr feststellt? Hierzu betrachtet man die

jeweiligen Funktionsgraphen genauer:

Abb. 3.11: Unterschiede der Funktionsgraphen von Gini-Impurity und Fehlklassifikationsrate und die

resultierenden Auswirkungen.

Der gewichtete Durchschnitt des Informationsgehalts der möglichen Kindknoten liegt auf der

Strecke zwischen den Punkten, die jeweils durch den Informationsgehalt der beiden Kindknoten

festgelegt werden. Dadurch, dass bei streng konkaven Funktionen der Graph stets oberhalb

jeder Verbindungsstrecke zweier seiner Punkte liegt, kann es bis auf den Sonderfall, dass

die Punkte des linken und rechten Kindknotens identisch sind, nie dazu kommen, dass der

Informationsgehalt des Elternknoten genauso groß ist wie der gewichtete Informationsgehalt

der möglichen Kindknoten. Somit kann beim Informationsgewinn bis auf den genannten

Sonderfall nie der Wert 0 auftreten. Anders sieht es hier bei der abschnittsweise linearen

Funktion der Fehlklassifikationsrate aus. Hier kann es sehr wohl auftreten, dass der gewichtete

Informationsgehalt der möglichen Kindknoten mit dem Punkt des Funktionsgraphen, der den

Informationsgehalt des Elternknoten repräsentiert, zusammenfällt.

3.1.3.2 Abbruchkriterien

Abbruchkriterien legen Regeln fest, unter welchen Umständen ein Knoten bei der Erstellung des

Entscheidungsbaums nicht weiter „in Kindknoten aufgeteilt“ und somit zu einem Blattknoten
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wird. Zwei Fälle sind dabei offensichtlich: Einerseits wird das Aufteilen beendet, wenn kein

Attribut mehr vorhanden ist, nach dessen Attributwerten man die Daten noch separieren

könnte. Andererseits wird man das Aufteilen beenden, wenn alle Daten dasselbe Label haben,

sodass ein weiteres Aufteilen keinen Informationsgewinn mehr liefern kann. In der Praxis wird

es allerdings selten der Fall sein, dass sich die Datenmenge durch einen Entscheidungsbaum

vollständig in homogene Teilmengen aufteilen lässt. So könnte man auch das Aufteilen eines

Knotens beenden, wenn ein gewisser „Reinheitsgrad“ erreicht ist, beispielsweise, wenn 90 %

der darin enthaltenen Daten einem bestimmten Label angehören. Alternativ kann man das

Aufteilen der Datenmenge in einem Knoten auch beenden, wenn sich nur noch eine bestimmte

Anzahl an Elementen in der Datenmenge befindet. Beide Kriterien dienen in erster Linie

dazu, eine Überanpassung des Entscheidungsbaums auf die Trainingsdaten zu verhindern. Um

den Entscheidungsbaum nicht zu tief werden zu lassen, kann man auch vorab eine maximale

Tiefe des Baums festlegen. Je nach Wahl des Split-Kriteriums kann auch abgebrochen werden,

wenn kein Informationsgewinn erfolgt (vgl. auch das Beispiel in 3.1.3.1.4).

Überblick (Abbruchkriterien)

1. Es ist kein Attribut mehr vorhanden, nach dessen Attributwerten die Datenmenge

weiter aufgeteilt werden könnte.

2. Alle Elemente in der Datenmenge haben das gleiche Label.

3. Ein bestimmter Prozentsatz (z. B. 90 %) der Elemente in der Datenmenge hat das

gleiche Label.

4. In der Datenmenge ist nur noch eine kleine Anzahl an Elementen vorhanden.

5. Der Baum hat bereits eine vorgegebene maximale Tiefe erreicht.

6. Es würde beim Aufteilen der Datenmenge kein Informationsgewinn erzielt werden.

3.1.3.3 Entscheidungsbaum-Algorithmus

Das Trainieren von Entscheidungsbäumen basiert auf einem verhältnismäßig einfachen rekur-

siven Algorithmus (in Anlehnung an Herbold (2022)):
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(1) Beende den Algorithmus, wenn eines oder mehrere der in Abschnitt 3.1.3.2 genann-

ten Abbruchkriterien eintritt.

(2) Bestimme das Attribut 𝐴, das hinsichtlich des gewählten Split-Kriteriums (s.

Abschnitt 3.1.3.1) den größten Informationsgewinn liefert.

(3) Teile die Daten anhand einer gewählten Regel gemäß der Attributwerte von 𝐴 auf.

(4) Wende den Algorithmus beginnend mit Schritt (1) rekursiv auf die Teilmengen an,

um die nachfolgenden Teilbäume zu erstellen.

Eine schrittweise Anwendung des Algorithmus an einem konkreten Beispiel findet sich im

Abschnitt Material zu den Beispielen 3.3.1 und 3.3.2.

3.1.3.4 Optimierung

Nach dem Training des Entscheidungsbaums kann versucht werden, den erhaltenen Baum

anhand der Validierungsdaten zu optimieren. Je nach Wahl des Abbruchkriteriums kann

eine Überanpassung des Baums hinsichtlich der Trainingsdaten vorliegen. Das bedeutet, dass

der Baum zu komplex und zu tief geworden ist und somit zu sehr auf die Trainingsdaten

angepasst wurde, anstatt allgemeingültige Regeln zu lernen. Um dies zu verhindern, werden

verschiedene Verfahren wie Pruning oder eine Anpassung der Abbruchkriterien verwendet.

Man versucht hierbei, den Baum zu verkleinern und damit die Vorhersagegenauigkeit und die

Interpretierbarkeit des Baums zu verbessern. Beim Pruning werden Knoten bzw. ganze Zweige

entfernt, die keine signifikante Vorhersagegenauigkeit auf den Validierungsdaten bewirken.

3.1.4 Einschätzung der Qualität des Entscheidungsbaums

Die Testphase ist ein wichtiger Bestandteil des maschinellen Lernens, da sie es ermöglicht, die

allgemeingültige Vorhersagegenauigkeit (Güte) des trainierten Modells auf den Testdaten zu

beurteilen.
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3.1.4.1 Klassifikation der Testdaten: Genauigkeit, Sensitivität und Spezifität

In Abschnitt 3.1.2 wurde bereits die Aufteilung der verfügbaren Daten in Trainings-, ggf.

Validierungs- und Testdaten dargestellt. Nachdem der Entscheidungsbaum anhand der Trai-

ningsdaten erstellt und ggf. anhand der Validierungsdaten optimiert wurde, kann die Güte

des Modells nun anhand der Testdaten eingeschätzt werden. Da die Testdaten weder zum

Trainieren noch zum Optimieren des Modells herangezogen wurden, ermöglichen diese eine

Einschätzung der Güte, also der allgemeingültigen Vorhersagegenauigkeit des Baums und

stellen sicher, dass dieser nicht überangepasst ist. Weiter können anhand der Testdaten auch

die verschiedenen Optimierungen, wie z. B. Pruning oder Anpassung der Abbruchkriterien,

auf ihre Wirkung hin beurteilt werden. Man klassifiziert die Testdaten anhand des erstellten

Entscheidungsbaums und vergleicht deren tatsächliches Label mit dem vorhergesagten bzw.

berechneten Label. Zur Beurteilung der Qualität des Baums gibt es verschiedene Gütemaße.

Das wohl gängigste Maß ist dabei der Quotient aus der Anzahl der richtig klassifizierten

Testdaten und der Gesamtzahl der Testdaten, der als Genauigkeit bezeichnet wird. Weitere

gängige Maße sind die Sensitivität und die Spezifität. Falls es nur zwei Label gibt, wird

eines als positiv und eines als negativ identifiziert. Die Sensitivität beschreibt, wie gut das

Modell darin ist, tatsächlich positive Fälle als solche zu erkennen. Sie wird berechnet, indem

man die Anzahl der richtig erkannten positiven Fälle durch die Gesamtzahl der positiven

Fälle dividiert. Ein höherer Wert der Sensitivität bedeutet, dass das Modell besser darin

ist, positive Fälle zu erkennen. Dagegen gibt die Spezifität an, wie gut das Modell darin ist,

tatsächlich negative Fälle zu erkennen. Sie berechnet sich analog zur Sensitivität, indem man

die Anzahl der richtig klassifizierten negativen Fälle durch die Gesamtzahl der tatsächlich

negativen Fälle dividiert. Je höher der Wert der Spezifität ist, umso besser erkennt das Modell

tatsächlich negative Fälle als solche.

3.1.4.2 Konfusionsmatrix

Eine übersichtliche Darstellung der Klassifikationsergebnisse der Testdaten bietet die Kon-

fusionsmatrix (vgl. Russel & Norvig, 2022, S. 728). Sie ist ein Instrument zur Bewertung

der Leistung des erstellten Modells, indem sie die Anzahl der richtig und falsch klassifizierten

Testdaten in Form einer Tabelle anzeigt. Für den Fall, dass nur zwei Label vorliegen, ergibt
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sich eine Vier-Felder-Tafel. Im Folgenden wird die Klassifikation von Pilzen gemäß der Label

essbar und giftig betrachtet. Es sind hierbei folgende vier Fälle möglich:

1. Richtig positiv: Testdatenpunkt mit Label „essbar“ wird vom Modell als essbar

klassifiziert

2. Falsch positiv: Testdatenpunkt mit Label „giftig“ wird vom Modell als essbar klas-

sifiziert

3. Richtig negativ: Testdatenpunkt mit Label „giftig“ wird vom Modell als giftig klas-

sifiziert

4. Falsch negativ: Testdatenpunkt mit Label „essbar“ wird vom Modell als giftig klassi-

fiziert

Nach dem Training des Modells wurden die Testdaten, wie in Abbildung 3.12 in der Konfusi-

onsmatrix dargestellt, klassifiziert.

Vorhergesagtes Label

essbar giftig Σ

essbar 241 43 284

Ta
ts

äc
hl

.L
ab

el

giftig 3 213 216

Σ 244 256 500

Abb. 3.12: Darstellung der Klassifikation der Testdaten in einer Konfusionsmatrix.

Der Konfusionsmatrix kann man entnehmen, dass das trainierte Modell die Pilze sehr gut

klassifiziert. Für die Genauigkeit ergibt sich dabei ein Wert von

241 + 213
241 + 213 + 43 + 3 =

470
500 = 94 %

Für die Sensitivität und Spezifität ergeben sich folgende Werte:

Sensitivität = 241
241 + 43 ≈ 84,9 % Spezifität = 213

213 + 3 ≈ 98,6 %
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Man sieht, dass der Wert der Sensitivität deutlich kleiner als der Wert der Spezifität ist

und die Gesamtgenauigkeit mit 94 % sehr hoch ist. Im vorliegenden Fall könnte man den

geringeren Wert der Sensitivität in Kauf nehmen, da es weniger schlimm ist, einen essbaren

Pilz als giftig einzustufen, als umgekehrt. Die Werte für Sensitivität und Spezifität sind somit

stark kontextabhängig.

Die Konfusionsmatrix kann durch Anfügen zusätzlicher Zeilen und Spalten auch bei mehr als

zwei Labeln angewendet werden (s. Abschnitt 3.3.4).

3.1.5 Möglichkeiten und Grenzen von Entscheidungsbäumen

Der Entscheidungsbaum-Algorithmus ist ein Verfahren des überwachten maschinellen Lernens,

das nach Mustern in Daten sucht und daraus ein Modell erstellt. Es eignet sich besonders

gut bei kategorialen und nominalen Daten. Dabei ist zu beachten, dass es sich hierbei um ein

heuristisches Vorgehen (vgl. Russel & Norvig, 2022, S. 732) handelt und es keine Garantie gibt,

dass der „beste“ bzw. überhaupt „ein guter“ Entscheidungsbaum gefunden wird, was mitunter

an der Greedy-Strategie bei der Auswahl des „besten“ Attributs liegt. Entscheidungsbäume

sind nur dann sinnvoll anwendbar, wenn in den Daten Muster vorhanden sind. Liegen keine

oder nur schwache Muster vor, bildet der Algorithmus dennoch einen Entscheidungsbaum.

Aus diesem Grund kommt – wie bei allen Verfahren des maschinellen Lernens – der Testphase

eine große Bedeutung zu, in der die Güte und Vorhersagequalität des erstellten Modells

überprüft wird. Hyperparameter1 wie Baumtiefe oder die prozentuale Aufteilung in Trainings-

und Testdaten nehmen starken Einfluss auf den Entscheidungsbaum; kleine Änderungen im

Datensatz können zu einer völlig anderen Struktur des Baums führen.

1Ein Hyperparameter ist ein Parameter, der vor Beginn des Lernprozesses festgelegt wird. Man kann sich

Hyperparameter wie eine Art „Drehknopf“ vorstellen, dessen eingestellter Wert Auswirkungen auf das

jeweils erstellte Modell hat (vgl. Russel & Norvig (2022)).
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3.2 Didaktische Hinweise / Bezug zum Lehrplan

3.2.1 Einordnung in den Lehrplan

Laut LehrplanPLUS wählen die Lehrkräfte als Beispiel für einen Algorithmus maschinellen Ler-

nens entweder den Entscheidungsbaum-Algorithmus oder den 𝑘-nächste-Nachbarn-Algorithmus

aus. Im Hinblick auf den Entscheidungsbaum-Algorithmus wird die Kompetenzerwartung

noch zwischen der Informatik und der spät beginnenden Informatik wie folgt unterschieden:

• Informatik 11 (NTG)

Die Schülerinnen und Schüler erläutern die Funktionsweise eines ausgewählten Algo-

rithmus maschinellen Lernens (𝑘-nächste-Nachbarn-Algorithmus oder Entscheidungsbaum-

Algorithmus) allgemein und an konkreten Beispielen.

• Spät beginnende Informatik 11 (HG, SG, MuG, SWG)

Die Schülerinnen und Schüler erläutern die Idee eines ausgewählten Algorithmus maschi-

nellen Lernens (𝑘-nächste-Nachbarn-Algorithmus oder Entscheidungsbaum-Algorithmus)

an konkreten Beispielen.

Der Lehrplan fordert also ein Verständnis der allgemeinen Funktionsweise (NTG) bzw. der Idee

(spät beginnend) des Entscheidungsbaum-Algorithmus anhand konkreter Beispiele. Darüber

hinaus erwerben die Schülerinnen und Schüler bei der Behandlung des Entscheidungsbaum-

Algorithmus zusätzlich folgende Kompetenzen:

• Die Schülerinnen und Schüler analysieren den Einfluss von Trainingsdaten und Para-

metern auf die Zuverlässigkeit der Ergebnisse eines Verfahrens maschinellen Lernens,

ggf. unter Verwendung eines geeigneten Werkzeugs.

• Die Schülerinnen und Schüler nehmen zu ausgewählten aktuellen Einsatzmöglichkeiten

der Künstlichen Intelligenz Stellung und bewerten Chancen und Risiken für Individuum

und Gesellschaft.

Im Einstieg in die Lehrplansequenz (Kapitel 2) haben die Schülerinnen und Schüler bereits die

Grundlagen maschinellen Lernens als ein Teilgebiet der Künstlichen Intelligenz kennengelernt.

Da es sich beim Entscheidungsbaum-Algorithmus um ein Verfahren des überwachten Lernens
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handelt, müssen die Bereitstellung von gelabelten Daten sowie deren Aufteilung in Trainings-,

ggf. Validierungs- und Testdaten (s. Abschnitt 3.1.2) im Hinblick auf die Erstellung sowie

das Testen des Entscheidungsbaums thematisiert werden. Unter Verwendung einer geeigneten

Software, wie z. B. Orange (https://orangedatamining.com/; Demšar et al. (2013)), wird

den Schülerinnen und Schülern der Einfluss der Trainingsdaten und Parameter, in diesem Fall

die Auswirkungen der Wahl der Abbruchkriterien (s. Abschnitt 3.1.3.2), auf den generierten

Entscheidungsbaum deutlich. Anhand der Konfusionsmatrix (s. Abschnitt 3.1.4.2) können

bereits an dieser Stelle Chancen und Risiken von KI-Systemen angesprochen werden. Eine

zusammenfassende und ausführliche Besprechung erfolgt in Kapitel 6.

3.2.2 Durchführung

Die nachfolgenden didaktischen Hinweise beziehen sich auf die Kompetenzerwartungen des

NTG. Für diesen Themenbereich werden ca. sechs Unterrichtsstunden, für die spät begin-

nende Informatik ca. vier Unterrichtsstunden vorgeschlagen. Im Abschnitt 3.2.2.8 finden sich

Anmerkungen, an welcher Stelle sich in der spät beginnenden Informatik Unterschiede in der

Herangehensweise ergeben können.

3.2.2.1 Einstieg

Als Einstieg in die Sequenz „Entscheidungsbaum-Algorithmus“ bietet es sich an, kurz zu klären,

was ein Entscheidungsbaum ist bzw. was überhaupt in der Informatik unter einem „Baum“

verstanden wird. Falls in der 9. Jahrgangsstufe bei der Behandlung des Kapitels „Data Mining“

Entscheidungsbäume bereits betrachtet wurden, bietet es sich an, an dieser Stelle darauf Bezug

zu nehmen. Als weitere Möglichkeit kann auch ein (wissensbasierter) Entscheidungsbaum

betrachtet werden, der etwa von Experten erstellt worden ist. Anschließend wird darauf

übergeleitet, dass ein Entscheidungsbaum nun selbstständig anhand von verfügbaren Daten

„gelernt“ werden soll. An dieser Stelle wird der Begriff „gelabelte Daten“ eingeführt, anhand

derer Entscheidungsregeln gefunden werden sollen. Diese Handreichung bietet hier zwei

verschiedene Szenarien mit passenden Datensätzen an. Im ersten Szenario (s. Abschnitt 3.3.1)

soll für Bewerberinnen und Bewerber entschieden werden, ob sie zum Vorstellungsgespräch

https://orangedatamining.com/
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eingeladen werden. Im zweiten Szenario (s. Abschnitt 3.3.2) sollen Fische als friedlich oder

feindselig erkannt werden2.

3.2.2.2 Trainings- und Testdaten

Es bietet sich an, den Schülerinnen und Schülern zunächst den gesamten gelabelten Datensatz

zu geben. Anhand diesem sollen sie für ein oder zwei neue, ungelabelte Daten entscheiden,

welches Label diesen zugeordnet werden soll, also ob sie die Person zum Vorstellungsgespräch

einladen würden bzw. ob der betrachtete Fisch friedlich oder feindselig ist. Der Datensatz

sollte den Schülerinnen und Schülern entweder ausgedruckt in Form von kleinen Kärtchen oder

digital in einem geeigneten Werkzeug wie ExcaliDraw (https://excalidraw.com), MiroBoard

(https://miro.com) oder OneNote bereitgestellt werden, sodass es ihnen möglich ist, die

Daten nach bestimmten Kriterien zu ordnen bzw. zu gruppieren. Dieser handlungsorientierte

Ansatz bietet sich auch anschließend bei der Erarbeitung des Entscheidungsbaum-Algorithmus

an. Nachdem die Schülerinnen und Schüler (vermutlich unterschiedliche) Vermutungen über

das Label der ungelabelten Daten angestellt haben, kann auf die Notwendigkeit von Testdaten

übergeleitet werden, anhand derer überprüft werden kann, ob gefundene Regeln Sinn ergeben

oder nicht. An dieser Stelle sollte auch verdeutlicht werden, dass die Trainingsdaten nicht

zum Testen verwendet werden können, da das Modell mit diesen trainiert wurde und somit

weitere gelabelte Daten notwendig sind. Im Anschluss legt man eine festgelegte Anzahl an

Daten beiseite, die später zum Testen des entwickelten Modells herangezogen werden; man

teilt den bestehenden Datensatz also in Trainings- und Testdaten auf (s. Abschnitt 3.1.2). Da

der Entscheidungsbaum-Algorithmus für die Schülerinnen und Schüler gut zu erarbeiten ist,

wurde im Hinblick auf die verfügbare Unterrichtszeit bewusst entschieden, Validierungsdaten

an dieser Stelle nicht explizit zu betrachten, sondern diese zu einem späteren Zeitpunkt in der

Sequenz zu thematisieren.

3.2.2.3 Erarbeitung des Entscheidungsbaum-Algorithmus

Nachdem die zur Verfügung stehenden gelabelten Daten in Trainings- und Testdaten aufgeteilt

wurden, wird mithilfe der Trainingsdaten der Entscheidungsbaum sukzessive erstellt. Wie
2Eine ähnliche Herangehensweise findet sich bei „AIUnplugged“ (https://www.aiunplugged.org/) und „Von

Daten und Bäumen“ (https://computingeducation.de/proj-it2school/).

https://excalidraw.com
https://miro.com
https://www.aiunplugged.org/
https://computingeducation.de/proj-it2school/
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in Abschnitt 3.1.3 dargestellt wurde, ist dabei der Informationsgewinn für die Auswahl des

jeweils „besten“ Attributes entscheidend. Zur Messung des Informationsgewinns stehen die in

Abschnitt 3.1.3.1 dargestellten drei Split-Kriterien zur Verfügung. Aufgrund der Einfachheit

bietet sich für den Unterricht die Fehlklassifikationsrate bzw. die tatsächlichen Fehlklassi-

fikationen (Anzahl der Fehler3) an, auch wenn diese ungenauer misst als die Entropie und

die Gini-Impurity, wie in Abschnitt 3.1.3.1.4 beschrieben. Bei der Auswahl von Beispielen

muss berücksichtigt werden, dass die Fehlklassifikationsrate möglicherweise keinen Informati-

onsgewinn misst. Gegebenenfalls muss der Algorithmus so formuliert werden, dass man die

Datenmenge dennoch weiter aufteilt, auch wenn kein Informationsgewinn ermittelt wird. Um

dies zu umgehen, kann der Informationsgewinn auch mit der Gini-Impurity berechnet werden;

die Entropie ist für die Schülerinnen und Schüler wohl am schwersten verständlich und scheint

deshalb für den Unterricht ungeeignet. An dieser Stelle ist allerdings zu berücksichtigen, dass

in der Software Orange die Entropie als Maß verwendet wird und somit möglicherweise ein

anderer Entscheidungsbaum ausgegeben wird als der zuvor per Hand erstellte Baum4.

Nach Auswahl des Splitkriteriums können die Schülerinnen und Schüler z. B. unter Verwendung

einer geeigneten tabellarischen Darstellung das „beste“ bzw. „wichtigste“ Attribut ermitteln

und die Datenmenge gemäß seiner Attributwerte aufteilen. Für die erhaltenen Teilmengen

wenden sie die Vorgehensweise rekursiv an, bis jeweils homogene Teilmengen entstehen; dies

ist bei beiden Datensätzen möglich.

Nach Fertigstellung des Entscheidungsbaums bietet es sich an, die Schülerinnen und Schüler

den Algorithmus in eigenen Worten formulieren zu lassen. Als Abbruchkriterium wird hier

mit Sicherheit sehr oft genannt werden, dass die Teilmenge „rein“ sein muss. An dieser Stelle

kann man mögliche andere Abbruchkriterien (s. Abschnitt 3.1.3.2) ansprechen, die später in

Orange einstellbar sind.

3.2.2.4 Testen und Bewerten

Anhand der Testdaten kann nun die Güte des gefundenen Modells, also die Vorhersagequalität

eingeschätzt werden. Als übersichtliche Darstellung der Klassifizierung der Testdaten wird an

3Anstelle der Anzahl der Fehler kann analog auch die Anzahl der „Treffer“, also die Zahl der richtig

klassifizierten Daten, betrachtet werden.
4Bei den hier verwendeten Beispielen ist der Entscheidungsbaum, der von Hand mit der Fehlklassifikationsrate

erstellt wird, und der von Orange mit denselben Daten erstellte Entscheidungsbaum identisch.
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dieser Stelle die Konfusionsmatrix (s. Abschnitt 3.1.4.2) eingeführt, die den Schülerinnen und

Schülern als Vier-Felder-Tafel aus dem Mathematikunterricht bereits bekannt ist. Als Maß

für die Vorhersagequalität dient die Genauigkeit (s. Abschnitt 3.1.4.1). Je nach Anwendungs-

fall können die unterschiedlichen Auswirkungen der falsch positiven bzw. falsch negativen

Klassifikationen angesprochen und somit auch andere Gütemaße wie z. B. die Sensitivität

und Spezifität (s. Abschnitt 3.2.2.8) behandelt werden. Den Schülerinnen und Schülern sollte

verdeutlicht werden, dass es sich bei der Erstellung von Entscheidungsbäumen um ein rein

heuristisches Vorgehen handelt. Es gibt also keine Garantie, dass der „beste“ oder überhaupt

ein „guter“ Entscheidungsbaum gefunden wird. Ein Testen des erstellten Modells ist somit

unabdingbar (s. Abschnitt 3.1.5).

3.2.2.5 Einstieg in Orange

Um den Entscheidungsbaum automatisiert zu erstellen und den Einfluss von Trainingsdaten

und Parametern auf die Zuverlässigkeit der Ergebnisse des Entscheidungsbaum-Algorithmus

(Lehrplankompetenzerwartung) untersuchen zu können, bietet sich als geeignete Software bei-

spielsweise Orange an. Hervorzuheben ist, dass es sich hierbei um kein didaktisches Werkzeug,

sondern um eine professionelle Machine-Learning-Software handelt. Unter Berücksichtigung

gewisser Aspekte, wie etwa die Bereitstellung einer kleinschrittigen Anleitung, wird Orange

als geeignetes Werkzeug erachtet, um die im LehrplanPLUS genannten Inhalte zu behandeln.

Analog zum Vorgehen in Abschnitt 3.2.2.3 werden dieselben Daten (s. Abschnitt 3.3.1 bzw.

3.3.2) in Orange importiert, mit denen der Entscheidungsbaum-Algorithmus manuell erarbeitet

wurde. Anhand dieser wird in Orange mit den entsprechenden Widgets (s. Abschnitt 3.2.3) ein

Entscheidungsbaum erstellt. Es sei an dieser Stelle nochmals betont, dass hier je nach Daten

ein anderer Entscheidungsbaum erstellt wird, als dies zuvor per Hand der Fall war, da Orange

mit der Entropie ein anderes Maß zur Messung des Informationsgewinns verwendet und

dieses (bislang) nicht geändert werden kann. Da im kleinen Datensatz nur sehr wenige Daten

vorhanden sind, müssen im Widget Tree die möglichen Abbruchkriterien (s. Abschnitt 3.1.3.2)

zunächst abgewählt werden.

Nachdem der Entscheidungsbaum anhand der Trainingsdaten erstellt wurde, wird das ge-

fundene Modell in Orange anhand der Testdaten überprüft und die Ergebnisse in einer

Konfusionsmatrix angezeigt.
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Mit Hilfe des Widgets Data Sampler können im Anschluss alle verfügbaren Daten nach vorge-

gebenen Kriterien automatisiert in Trainings- und Testdaten aufgeteilt und die Auswirkungen

auf den erstellten Entscheidungsbaum betrachtet werden.

3.2.2.6 Großer Datensatz in Orange: Einfluss von Hyperparametern

Da die Auswirkungen der verschiedenen einstellbaren Parameter (Aufteilungsrate in Trainings-

daten und Testdaten sowie verschiedene Abbruchkriterien) anhand des kleinen Datensatzes

nicht deutlich werden, gibt es sowohl für den Datensatz mit Bewerbungsunterlagen als auch den

Datensatz mit Fischen jeweils eine Variante mit einer deutlich größeren Anzahl an gelabelten

Daten, die in Orange genutzt werden können. Anders als bei den zuvor betrachteten kleinen

Datensätzen ist hier eine Zerlegung in vollständig homogene Teilmengen nicht möglich. Hier

erkennen die Schülerinnen und Schüler, dass durch Variation der Parameterwerte, wie beispiels-

weise die maximale Baumtiefe oder eine Mindestanzahl an Elementen (s. Abschnitt 3.1.3.2),

der Aufbau des Entscheidungsbaums und dessen Vorhersagequalität beeinflusst wird. Ebenso

wirken sich unterschiedliche Aufteilungen der gelabelten Daten in Trainings- und Testdaten auf

das Ergebnis aus. An dieser Stelle kann mit den Schülerinnen und Schülern des NTG auf den

Einsatz von Validierungsdaten eingegangen werden, um den erhaltenen Entscheidungsbaum

ggf. noch zu optimieren.

3.2.2.7 Reflexion und Vertiefung

Am Ende dieser Sequenz sollten Einsatzmöglichkeiten und Grenzen von Entscheidungsbäumen

besprochen und reflektiert werden (s. Abschnitt 3.1.5). Zur Vertiefung wenden die Schülerinnen

und Schüler die in dieser Sequenz erworbenen Kompetenzen auf ein neues Szenario5 an.

Dabei erstellen sie automatisiert einen Entscheidungsbaum, beurteilen und interpretieren das

Ergebnis und nehmen Optimierungen durch die Variation von Parameterwerten vor.

5Hierfür kann der nicht für die Erarbeitung des Entscheidungsbaum-Algorithmus genutzte Datensatz aus

Abschnitt 3.3 verwendet werden.
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3.2.2.8 Anmerkungen zur spät beginnenden Informatik

Um eine Idee des Entscheidungsbaum-Algorithmus zu erhalten, genügt es für die Schülerinnen

und Schüler der spät beginnenden Informatik, die Auswahl der Wurzel als erstes „bestes“

Attribut nachzuvollziehen. Im Gegensatz dazu erstellen die Schülerinnen und Schüler des

NTG anhand des kleinen Datensatzes den Entscheidungsbaum weitgehend selbstständig und

leiten darauf aufbauend den Entscheidungsbaum-Algorithmus ab bzw. formulieren diesen. Auf

die in Abschnitt 3.2.2.7 beschriebene Vertiefung kann für die Schülerinnen und Schüler der

spät beginnenden Informatik verzichtet werden.

3.2.3 Orange: Erläuterung der benötigten Widgets

Dieser Abschnitt stellt alle für das Erstellen von Entscheidungsbäumen mithilfe der Software

Orange benötigten Widgets kurz vor. Für die Handreichung wurde mit der Version 3.34.0 von

Orange gearbeitet.

3.2.3.1 Bereitstellung der Daten

Die gelabelten Daten können am einfachsten in Form einer csv- oder xlsx-Datei bereitgestellt

werden. Hierbei umfasst die erste Zeile die Namen der Attribute. In den nachfolgenden Zeilen

finden sich dann jeweils die Datenobjekte mit ihren Attributwerten. Für den Fischdatensatz

schaut die xlsx-Datei etwa wie folgt aus:

Abb. 3.13: Ausschnitt aus der xlsx-Datei für den Fischdatensatz.
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3.2.3.2 File und Data Table

Das Widget File wird benötigt, um einen Datensatz, der wie

in Abschnitt 3.2.3.1 beschrieben in einer csv- oder xlsx-Datei

gespeichert ist, in Orange bereitzustellen. Dazu kann das Wid-

get File via Drag & Drop in den Arbeitsbereich gezogen und

anschließend die gewünschte Datei ausgewählt werden. Durch

einen Rechtsklick auf das Widget kann dessen Bezeichnung

geändert werden.

Abb. 3.14: File-Widget in

Orange.

Es ist aber auch möglich, die csv- oder xlsx-Datei direkt in den Arbeitsbereich zu ziehen;

es wird dann automatisch ein Widget File erstellt. Wurde die Datei richtig geladen, werden

unter File die verfügbaren Spalten angezeigt. Hier ist wichtig, dass noch die Zielvariable

(target), also unser Label festgelegt werden muss:

Abb. 3.15: Festlegen der Zielvariable im File-Widget.

Das Widget Data Table wird im Grunde nicht benötigt, ist jedoch dennoch nützlich, um die

geladenen Daten direkt in Orange betrachten zu können. Hierfür wird das Widget Data Table

in den Arbeitsbereich gezogen und anschließend mit einer Datenleitung mit dem File-Widget

verbunden:
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Abb. 3.16: Das Fenster des Widgets Data Table in Orange.

3.2.3.3 Tree und Tree Viewer

Um einen Entscheidungsbaum aus den geladenen gelabelten Daten (Trainingsdaten) erstellen

zu können, benötigt man das Widget Tree, das mit einer Datenleitung mit dem File-Widget

verbunden wird. Das Widget Tree erstellt zwar das Modell, es wird aber noch kein Entschei-

dungsbaum angezeigt; hierzu ist das Widget Tree Viewer notwendig, das wiederum mit einer

Datenleitung mit Tree verbunden wird. Im Widget Tree können verschiedene Abbruchkri-

terien (s. Abschnitt 3.1.3.2) festlegt werden. Gerade bei sehr kleinen Datensätzen empfiehlt

es sich, alle Optionen abzuwählen. Bei größeren Datensätzen können die Auswirkungen der

unterschiedlichen Wahl der Parameter auf den erstellten Entscheidungsbaum erkundet werden.

Im Widget Tree Viewer empfiehlt es sich, den Haken bei Show details in non-leaves

zu entfernen. Der Baum wird dadurch übersichtlicher, enthält aber dennoch alle benötigten

Informationen.
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Abb. 3.17: Die Fenster der Widgets Tree und Tree Viewer in Orange.

3.2.3.4 Predictions und Confusion Matrix

Um das mit dem Widget Tree erstellte Modell testen zu können, werden Testdaten benötigt,

die wieder in einem Widget File in Orange geladen werden. Um die beiden File-Widgets

unterscheiden zu können, empfiehlt es sich, diese entsprechend umzubenennen:

Abb. 3.18: Laden der Testdaten in Orange.

Die Testdaten sollen nun anhand des erstellten Modells (Widget Tree) klassifiziert werden und

das jeweils vorhergesagte Label mit dem tatsächlichen Label verglichen werden. Hierfür gibt

es das Widget Predictions, das als Eingaben das Modell und die Testdaten bekommt. Es

zeigt für alle Testdaten an, ob diese richtig oder falsch klassifiziert wurden. Mit dem Widget

Confusion Matrix kann die Konfusionsmatrix (s. Abschnitt 3.1.4.2) in Orange erstellt und

angezeigt werden:
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Abb. 3.19: Die Fenster der Widgets Predicitions und Confusion Matrix in Orange.

3.2.3.5 Data Sampler: Automatische Unterteilung in Trainings- und Testdaten

Orange bietet auch die Möglichkeit, eine Menge an gelabelten Daten automatisch nach

anpassbaren Regeln in Trainings- und Testdaten aufzuteilen. Hierzu wird das Widget Data

Sampler benötigt, das als Eingabe alle gelabelten Daten bekommt; in unserem obigen Beispiel

werden also die Trainings- und Testdaten zu einer Datei zusammengeführt. Im Data Sampler

kann nun konfiguriert werden, dass ein festgelegter prozentualer Anteil (z. B. 70 %) aller

Daten als Trainingsdaten verwendet werden soll. Die verbliebenen Daten werden als Testdaten

zum Überprüfen der Güte des erstellten Modells verwendet. Der Data Sampler hat dabei

zwei mögliche Ausgänge: Data Sample, die zufällig ausgewählten Daten (z. B. hier 70 % der

Daten), und Remaining Data, die nicht ausgewählten Daten. Ist die Option Replicable

(deterministic) sampling nicht ausgewählt, werden die Daten nach dem eingestellten

Verhältnis den Trainings- und Testdaten zufällig zugewiesen. Die beiden Ausgänge des Widgets
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Data Sampler müssen nun in geeigneter Weise auf den Datenleitungen, die zum Widget Tree

bzw. zum Widget Predicitions führen, ausgewählt werden:

Abb. 3.20: Das Widget Data Sampler in Orange.

Im Widget Data Sampler kann der gewünschte prozentuale Anteil des Data Sample festgelegt

werden. Durch Klicken auf die ausgehenden Datenleitungen kann gewählt werden, ob das

Data Sample oder die Remaining Data weitergeleitet werden soll:

Abb. 3.21: Funktionsweise des Data Sampler Widgets in Orange.
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3.3 Material

3.3.1 Bewerbungsunterlagen – Einladung zum Vorstellungsgespräch oder nicht?

Der Datensatz „Bewerbungsunterlagen“ umfasst folgende Elemente:

(a) Kleiner Datensatz mit 15 gelabelten Trainingsdaten, 5 gelabelten Testdaten sowie einer

ungelabelten Bewerberin, für die entschieden werden soll, ob sie zum Bewerbungsgespräch

eingeladen werden soll oder nicht.

– Kopiervorlage mit den Scorecards (können ausgedruckt oder digital bereitgestellt

werden)

– csv-Dateien für Trainings-, Testdaten sowie dem gesamten gelabelten Datensatz

(b) Großer Datensatz mit 5000 gelabelten Daten (inkl. Muster).

– csv-Datei mit dem gesamten gelabelten Datensatz

(c) Arbeitsheft (10 Seiten) zur Umsetzung der Lehrplaninhalte anhand von aufeinander

aufbauenden Arbeitsaufträgen.
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Künstliche Intelligenz 11 Entscheidungsbaum-Algorithmus

Der Entscheidungsbaum-Algorithmus

Benötigtes Material (s. Kopiervorlage am Ende des Dokuments):

• 20 gelabelte Daten (15 Trainingsdaten und 5 Testdaten) in Form von Bewerbungskärtchen

• Scorecard von Mara Kur mit unbekanntem Label

Trainings- und Testdaten

Arbeitsauftrag 1: Wie würdest du entscheiden?

Gegeben ist ein Datensatz mit 15 Mitarbeiterinnen und Mitarbeitern, von denen jeweils bekannt ist, ob
diese einen hohen oder niedrigen Score-Wert aufweisen. Versuche anhand dieses Datensatzes für eine neue
Bewerbung (Mara Kur) zu entscheiden, ob diese zum Bewerbungsgespräch eingeladen werden soll oder
nicht.

Zentrale Idee (Trainingsdaten vs. Testdaten)

Gemäß dem Verfahren des überwachten Lernens wird ein Modell (hier ein Entscheidungsbaum) ausgehend

1
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von gelabelten Trainingsdaten erstellt:

Aber wie gut ist dieser Entscheidungsbaum? Wie kann die „Vorhersage-Qualität“ des Entscheidungsbaumes
überprüft werden?

Die „Güte“ des Baumes kann mit Hilfe von Daten getestet werden, bei denen das Label bekannt ist.
Hierzu unterteilt man die verfügbare Datenmenge vorab in Trainingsdaten, ggf. Validierungsdaten
(später) und Testdaten. Die Trainingsdaten werden zum Erstellen des Baumes verwendet, die Testdaten
im Anschluss, um die Güte bzw. „Vorhersage-Qualität“ des Baumes beurteilen zu können.

Wir haben von den insgesamt verfügbaren 20 Scorecards mit bekanntem Label bereits fünf Scorecards als
Testdaten bei Seite gelegt (roter Balken). Diese werden beim Erstellen des Entscheidungsbaums nicht verwendet:

Erstellen des Entscheidungsbaums anhand der Trainingsdaten

Beim Aufbau des Entscheidungsbaumes versucht man zunächst dasjenige Attribut auszuwählen, das den Daten-
satz in möglichst homogene Gruppen aufteilt. Hierzu betrachtet man die Fehlklassifikationen.

Überblick (Berechnung des Informationsgewinns anhand der Fehlklassifikationen)

Eine Möglichkeit, den Informationsgehalt einer Menge zu messen, sind die Fehlklassifikationen. Man
betrachtet hierbei die Fehler in der Ausgangsmenge bzw. die summierten Fehler in den entstandenen
Teilmengen. Betrachten wir hierzu folgendes Beispiel:

2

3.3.2 Fische – friedlich oder feindselig?

Der Datensatz „Fische“ umfasst folgende Elemente:

(a) Kleiner Datensatz mit 14 gelabelten Daten, von denen 9 als Trainingsdaten und 5

als Testdaten verwendet werden. Für zwei ungelabelte Fische soll mithilfe des Entschei-

dungsbaums das Label vorhergesagt werden.
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– Kopiervorlage mit den Fischen (können ausgedruckt oder digital bereitgestellt

werden)

– csv-Dateien für Trainings-, Testdaten sowie dem gesamten gelabelten Datensatz

(b) Großer Datensatz mit 1625 gelabelten Daten (inkl. Muster).

– csv-Datei mit dem gesamten gelabelten Datensatz

(c) Arbeitsheft (10 Seiten) und Foliensatz zur Umsetzung der Lehrplaninhalte anhand

von aufeinander aufbauenden Arbeitsaufträgen.

Künstliche Intelligenz 11 Entscheidungsbaum-Algorithmus

Der Entscheidungsbaum-Algorithmus

Benötigtes Material (s. Kopiervorlage am Ende des Dokuments):

• 14 gelabelte Daten in Form von Fischkärtchen

• 2 Fische mit unbekanntem Label

Trainings- und Testdaten

Arbeitsauftrag 1: Wie würdest du entscheiden?

Gegeben ist ein Datensatz mit 14 Fischen, von denen jeweils bekannt ist, ob diese friedlich (grünes Blatt)
oder feindselig (Fischgräte) sind. Versuch anhand dieses Datensatzes für zwei neue Fische derselben Spezies
zu entscheiden, ob du diese ohne Bedenken in dein Aquarium geben kannst.

Zentrale Idee (Trainingsdaten vs. Testdaten)

Gemäß dem Verfahren des überwachten Lernens wird ein Modell (hier ein Entscheidungsbaum) ausgehend
von gelabelten Trainingsdaten erstellt:

1
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Aber wie gut ist dieser Entscheidungsbaum? Wie kann die „Vorhersage-Qualität“ des Entscheidungsbaumes
überprüft werden?

Die „Güte“ des Baumes kann mit Hilfe von Daten getestet werden, bei denen das Label bekannt ist.
Hierzu unterteilt man die verfügbare Datenmenge vorab in Trainingsdaten, ggf. Validierungsdaten
(später) und Testdaten. Die Trainingsdaten werden zum Erstellen des Baumes verwendet, die Testdaten
im Anschluss, um die Güte bzw. „Vorhersage-Qualität“ des Baumes beurteilen zu können.

Aufteilen des Datensatzes in Trainings- und Testdaten:

Erstellen des Entscheidungsbaums anhand der Trainingsdaten

Beim Aufbau des Entscheidungsbaumes versucht man zunächst dasjenige Attribut auszuwählen, das den Daten-
satz in möglichst homogene Gruppen aufteilt. Hierzu betrachtet man die Fehlklassifikationen.

Überblick (Berechnung des Informationsgewinns anhand der Fehlklassifikationen)

Eine Möglichkeit, den Informationsgehalt einer Menge zu messen, sind die Fehlklassifikationen. Man
betrachtet hierbei die Fehler in der Ausgangsmenge bzw. die summierten Fehler in den entstandenen
Teilmengen. Betrachten wir hierzu folgendes Beispiel:

2

3.3.3 Entscheidungsbaum-Simulator

An der Didaktik der Informatik der Universität Passau wurde der Entscheidungsbaum-

Simulator (s. Abbildung 3.22) entwickelt, der sich ebenfalls eignet, Entscheidungsbäume

automatisiert erstellen und testen zu können.

Im Gegensatz zu Orange handelt es sich hierbei um eine abgegrenzte Umgebung, die ge-

nau das an Funktionalität bietet, was in Bezug auf die im LehrplanPLUS formulierten

Kompetenzen hinsichtlich des Entscheidungsbaum-Algorithmus relevant ist. Weiter kann im
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Abb. 3.22: Grafische Oberfläche des Entscheidungsbaum-Simulators.

Entscheidungsbaum-Simulator im Hinblick auf das Split-Kriterium aus den drei Möglichkeiten

Fehlklassifikationsrate, Gini-Impurity und Entropie gewählt werden. Eine Festlegung von

verschiedenen Hyperparametern (wie etwa die maximale Baumtiefe oder Reinheit der Knoten)

ist ebenso möglich wie das Anzeigen der Teildatensätze in den jeweiligen Knoten des Baums.

Die aktuelle Version des Entscheidungsbaum-Simulators samt Benutzerhandbuch ist im zur

Handreichung gehörenden Materialordner verfügbar.

3.3.4 Aufgabenbeispiel für Leistungserhebungen

Ein Streamingdienstanbieter möchte zielgenau für unterschiedliche Zielgruppen Werbung

schalten. Um den potentiellen Kunden das passende Abomodell anbieten zu können, muss

er eine Aussage treffen, welches Angebot am besten zu ihnen passt. Dazu erstellt er auf

Basis seiner bisherigen Kundendaten ein Modell, mit dem er mit hoher Wahrscheinlichkeit

vorhersagen kann, welche Art von Abo zukünftige Kunden abschließen werden. Der Datensatz

besitzt folgende Merkmale bzw. Merkmalsausprägungen:

• KNr: Ganzzahlige Kundennummer, die fortlaufend durchnummeriert wird und somit

eindeutig ist.
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• Alter: Gibt den Altersbereich des Kunden bzw. der Kundin an (Alt / Jung).

• Anderer Dienst: Gibt an, ob bereits ein anderer Dienst genutzt wird (Ja / Nein).

• Vorliebe: Gibt an, welchen Bereich des Angebots der Kunde bzw. die Kundin am

häufigsten nutzt (Filme / Serien / Sport).

Als Label ist die jeweilige Aboart (Kostenlos, Standard, Premium) gegeben. Im Folgenden

wird ein Ausschnitt aus den verfügbaren Kundendaten betrachtet, die als Trainingsdaten für

das Modell genutzt werden sollen:

KNr Alter Anderer Dienst Vorliebe Aboart

1 Jung Ja Serien Kostenlos

2 Alt Nein Sport Standard

3 Jung Nein Filme Premium

4 Jung Nein Sport Standard

5 Jung Ja Sport Kostenlos

6 Alt Nein Serien Premium

7 Jung Nein Sport Standard

8 Alt Ja Sport Kostenlos

9 Alt Nein Sport Standard

10 Jung Nein Serien Standard

11 Alt Ja Filme Kostenlos

12 Alt Nein Filme Premium

13 Jung Nein Serien Standard

14 Alt Nein Sport Standard

15 Alt Ja Serien Kostenlos
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1. Der Azubi der IT-Abteilung erstellt anhand der gegebenen Trainingsdaten folgenden

Entscheidungsbaum:

Kostenlos

Standard

Premium

Standard

Kostenlos

Premium

Standard

Kostenlos

Standard

Standard

Kostenlos

Premium

Standard

Standard

Kostenlos

KNr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Erklären Sie, weshalb der obige Entscheidungsbaum kein brauchbares Modell darstellt.

Begründen Sie zudem, warum das Merkmal KNr generell nicht zur Erstellung eines

Entscheidungsbaums herangezogen werden sollte.

Lösungsvorschlag:

• Für die Aufteilung der Datenobjekte gemäß ihren Attributwerten wurde ein Attribut

verwendet, das für jedes Datenobjekt einen eindeutigen Wert hat (sehr starkes

Overfitting). Somit ist in jeder entstandenen Teilmenge nur noch ein einziges

Datenobjekt enthalten.

• Gemäß dem erstellten Modell können keine neuen Datenobjekte, die ja Kunden-

nummern enthalten, die noch nicht vergeben wurden, klassifiziert werden.

• Ziel ist es, Entscheidungsregeln zu finden, sodass die Datenobjekte möglichst

passgenau in Teilmengen Abo Premium, Abo Standard und Abo Kostenlos eingeteilt

werden.

2. Formulieren Sie den Entscheidungsbaum-Algorithmus in Pseudocode.

Lösungsvorschlag:

s. Abschnitt 3.1.3.3.

3. Der Entscheidungsbaum-Algorithmus erstellt anhand der gegebenen Trainingsdaten

folgenden Entscheidungsbaum:
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Abb. 3.23: Anhand der Trainingsdaten erstellter Entscheidungsbaum.

Begründen Sie unter Betrachtung des Informationsgewinns, weshalb im rechten Teilbaum

zunächst das Attribut Vorliebe und nicht das Attribut Alter ausgewählt wurde.

Lösungsvorschlag:

Man betrachtet für die beiden Attribute jeweils den Informationsgewinn. Vor dem

Aufteilen nach einem weiteren Attribut besitzen sieben der zehn Daten das Label

Standard und drei Daten das Label Premium. Würde man nicht weiter aufteilen, ergeben

sich drei Fehler in den Klassifikationen. Teilt man die Daten nach dem Attribut Vorliebe

auf, ergibt sich nur noch ein Fehler in den Klassifikationen, teilt man nach dem Attribut

Alter auf, ergeben sich drei Fehler in den Klassifikationen (s. nachfolgende Tabellen).

Somit wird als „bestes“ Attribut für den rechten Teilbaum zunächst das Attribut

Vorliebe ausgewählt.

Attribut Vorliebe

Standard Premium Fehler

Serien 2 1 1

Sport 5 0 0

Filme 0 2 0

Summe Fehler: 1

Attribut Alter

Standard Premium Fehler

Alt 4 1 1

Jung 3 2 2

Summe Fehler: 3

4. Ermitteln Sie, welches Abo der folgende Neukunde gemäß dem Modell voraussichtlich

abschließen wird:
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Name Alter Anderer Dienst Vorliebe

Kilian Turing Alt Nein Serien

Lösungsvorschlag:

Gemäß dem Modell wird der Kunde voraussichtlich ein Premium-Abo abschließen.

5. Das in Aufgabe 3 gegebene Modell wurde zur Klassifizierung von Testdaten herangezo-

gen. Für den Streamingdienstanbieter ist zunächst nur von Interesse, ob das erstellte

Modell zuverlässig ermitteln kann, ob ein Neukunde voraussichtlich ein bezahltes oder

unbezahltes Abo abschließend wird, d. h. die Label Standard und Premium werden zu

einem Label Kostenpflichtig zusammengefasst. Das Ergebnis der Klassifizierung der

Testdaten ist in nachfolgender Konfusionsmatrix zu sehen:

Vorhergesagtes Label

Kostenlos Kostenpflichtig Σ

Kostenpflichtig 93 85 178

Ta
ts

äc
hl

.L
ab

el

Kostenpflichtig 89 81 170

Σ 182 166 348

Bewerten Sie die Konfusionsmatrix und nennen Sie mögliche Gründe, die zu dem

vorliegenden Ergebnis geführt haben könnten.

Lösungsvorschlag:

• Betrachtet man das Qualitätsmaß „Genauigkeit“, sieht man, dass lediglich 50

Prozent der Testdaten korrekt klassifiziert wurden und somit in etwa genauso viele

wie sich bei einer zufälligen Klassifizierung (33,3 %) ergeben würden.

• Das Modell scheint aufgrund der Testdaten also nur eine sehr geringe Vorhersage-

genauigkeit zu besitzen.
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• Mögliche Gründe für das vorliegende Ergebnis: Zu kleine Anzahl an Trainingsdaten,

Trainingsdaten falsch gewählt, generell kein Muster im Verhalten der Kunden

vorhanden etc.

Alternative Aufgabenstellung:

Falls in der Unterrichtssequenz zu Entscheidungsbäumen auch Konfusionsmatrizen

behandelt wurden, die sich nicht auf die Betrachtung von zwei Label beschränken, wäre

alternativ auch folgende Aufgabenstellung denkbar:

Das ermittelte Modell wurde zur Klassifizierung von Testdaten herangezogen. Das

Ergebnis der Klassifizierung der Testdaten ist in nachfolgender Konfusionsmatrix zu

sehen:

Vorhergesagtes Label

Kostenlos Standard Premium Σ

Kostenlos 82 61 57 200

Ta
ts

äc
hl

.L
ab

el

Standard 63 67 51 181

Premium 44 51 69 164

Σ 189 179 177 545

Bewerten Sie die Konfusionsmatrix und nennen Sie mögliche Gründe, die zu dem

vorliegenden Ergebnis geführt haben könnten.

Lösungsvorschlag:

• Betrachtet man das Qualitätsmaß „Genauigkeit“, sieht man, dass lediglich 40

Prozent der Testdaten korrekt klassifiziert wurden und somit nur geringfügig mehr

als sich voraussichtlich bei einer zufälligen Klassifizierung ergeben würden.

• Das Modell scheint aufgrund der Testdaten also nur eine sehr geringe Vorhersage-

genauigkeit zu besitzen.
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• Mögliche Gründe für das vorliegende Ergebnis: Zu kleine Anzahl an Trainingsdaten,

Trainingsdaten falsch gewählt, generell kein Muster im Verhalten der Kunden

vorhanden etc.

• Es wäre auch eine Argumentation denkbar, die die Unterscheidung der Fehlklassifi-

kationen mit einbezieht, also dass beispielsweise bei tatsächlichem Label Kostenlos

das vorhergesagte Label Standard besser ist als das vorhergesagte Label Premium.
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4.1 Fachliche Grundlagen

4.1.1 Überblick

Der 𝑘-nächste-Nachbarn-Algorithmus ist ein Verfahren des überwachten maschinellen Lernens,

das sowohl zur Klassifizierung als auch zur Regression verwendet werden kann. Zunächst wird

die Verwendung des 𝑘-nächste-Nachbarn-Algorithmus zur Klassifizierung betrachtet. Dazu be-

nötigt der Algorithmus gelabelte, also bereits klassifizierte Trainingsdaten. Zur Klassifizierung

eines neuen Datenpunkts 𝑃 zieht man eine gegebene Anzahl 𝑘 von Trainingsdatenpunkten

heran, die ihm in Bezug auf seine Merkmalsausprägungen „am ähnlichsten“ sind. Man ordnet

ihm diejenige Klasse zu, die unter diesen 𝑘 Trainingsdatenpunkten am häufigsten vorkommt

(s. Abschnitt 4.1.2). Um die „Ähnlichkeit“ bestimmen zu können, benötigt man Abstands-

maße (s. Abschnitt 4.1.3). Dabei müssen die verwendeten Daten häufig zunächst aufbereitet

werden (s. Abschnitt 4.1.4). In Abschnitt 4.1.5 wird der Lernprozess des 𝑘-nächste-Nachbarn-

Algorithmus insgesamt betrachtet. Die Möglichkeiten und Grenzen der Anwendung werden

in Abschnitt 4.1.6 thematisiert. In Abschnitt 4.1.7 erfolgt ein Exkurs zur Verwendung des

𝑘-nächste-Nachbarn-Algorithmus zur Regression.

4.1.2 Grundidee

Zur Veranschaulichung der Grundidee des 𝑘-nächste-Nachbarn-Algorithmus werden zunächst

Daten mit zwei Merkmalen betrachtet.

Im folgenden Beispiel stehen als Trainingsdaten Texte zur Verfügung, die bereits als eng-

lische (Klasse 1) bzw. deutsche (Klasse 2) Texte gelabelt wurden. Nun soll mithilfe des

𝑘-nächste-Nachbarn-Algorithmus ein neuer Text 𝑃 anhand der beiden Merkmale durch-

schnittliche Wortlänge und relative Vokalhäufigkeit klassifiziert werden. Da hier lediglich

zwei Merkmale verwendet werden, lässt sich ein Datenpunkt mit den Merkmalen 𝑝1 und

𝑝2 als Punkt (𝑝1 | 𝑝2) ∈ R2 in einem zweidimensionalen Koordinatensystem interpretieren

(s. Abbildung 4.1).

Anschaulich haben diejenigen Trainingsdatenpunkte, die 𝑃 in Bezug auf die Merkmalsausprä-

gungen „am ähnlichsten“ sind, den geringsten Abstand zu 𝑃. Diese bezeichnet man als seine

„nächsten Nachbarn“.
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Abb. 4.1: Zweidimensionale Darstellung der Datenpunkte.

Um die nächsten Nachbarn von 𝑃 ermitteln zu können, muss zunächst für alle Trainingsda-

tenpunkte der jeweilige Abstand zu 𝑃 bestimmt werden (s. Abbildung 4.2).
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Abb. 4.2: Bestimmung der Abstände der Trainingsdatenpunkte zu 𝑃.

Aus allen Trainingsdatenpunkten wird nun eine bestimmte Anzahl 𝑘 ausgewählt, die 𝑃 am

nächsten liegen. Diese werden „𝑘 nächste Nachbarn“ genannt. Dieses 𝑘 ist ein Hyperparameter

des Algorithmus, der im Vorfeld festgelegt werden muss. Anschließend wird 𝑃 derjenigen

Klasse zugeordnet, die die meisten Trainingsdatenpunkte unter seinen 𝑘 nächsten Nachbarn

hat. Ist keine eindeutige Entscheidung möglich, muss das Klassifikationsergebnis anhand

weiterer Kriterien bestimmt werden.
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Für 𝑘 = 1 wird 𝑃 die Klasse des nächsten Trainingsdatenpunkts, also die Klasse 1 (Englisch),

zugeordnet (s. Abbildung 4.3).
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Abb. 4.3: Bestimmung der Klasse des neuen Datenpunktes anhand der Klasse des nächsten Trainings-

datenpunktes.

Für 𝑘 = 3 wird 𝑃 die Klasse der Mehrheit der drei nächsten Nachbarn zugeordnet. Da zwei

Datenpunkte zur Klasse 2 und lediglich einer zur Klasse 1 gehören, wird 𝑃 die Klasse 2

(Englisch) zugeordnet (s. Abbildung 4.4).
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Abb. 4.4: Bestimmung der Klasse des neuen Datenpunktes anhand der Klassen der drei nächsten

Trainingsdatenpunkten.
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4.1.3 Abstandsmaße

Der Abstand der Trainingsdatenpunkte zu dem zu klassifizierenden Datenpunkt 𝑃 wird durch

die jeweiligen Ausprägungen der verwendeten Merkmale bestimmt. Für die Berechnung der

Distanz stehen unterschiedliche Abstandsmaße zur Verfügung.

4.1.3.1 Euklidische Distanz

Das gängige Abstandsmaß, das die Schülerinnen und Schüler aus dem Mathematikunterricht

kennen, ist die Euklidische Distanz.

Für zwei Datenpunkte 𝐴(𝑎1 | 𝑎2 | ... | 𝑎𝑛), 𝐵(𝑏1 | 𝑏2 | ... | 𝑏𝑛) ∈ R𝑛 mit jeweils 𝑛 verschiedenen

Merkmalsausprägungen wird der Abstand 𝑑 (𝐴,𝐵) folgendermaßen berechnet:

𝑑 = 𝑑 (𝐴,𝐵) =

√√
𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2

Für zwei Merkmale kann dieser grafisch

durch die Länge der Strecke 𝑑 im Koordina-

tensystem veranschaulicht werden (s. Ab-

bildung 4.5).

Nach dem Satz des Pythagoras ergibt sich:

𝑑 (𝐴,𝐵) =
√︃
(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2

𝑏1 − 𝑎1

𝑏2 − 𝑎2
𝑑

𝑥1

𝑦2

𝑎1

𝑎2

𝑏1

𝑏2

𝐴

𝐵

Abb. 4.5: Euklidische Distanz im R2.

4.1.3.2 Manhattan-Distanz

Die Manhattan-Distanz bezieht ihren Namen aus dem Schachbrettmuster des Straßennetzes

von Manhattan. Will beispielsweise ein Taxifahrer von Punkt 𝐴 nach Punkt 𝐵 fahren, kann

er nicht die direkte Verbindungsstrecke wählen, die der euklidischen Distanz entspricht,

sondern muss dem Straßenmuster folgen und damit den Manhattan-Abstand zurücklegen.

Rechnerisch bestimmt man die Manhattan-Distanz zweier Datenpunkte 𝐴,𝐵 ∈ R𝑛, indem man

die Absolutbeträge der Differenzen der jeweiligen Merkmalsausprägungen von 𝐴 und 𝐵 aus
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jeder Merkmalsdimension addiert:

𝑑 (𝐴,𝐵) =
𝑛∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |

Für zwei Merkmale kann die Berechnung

des Manhattan-Abstands wiederum gra-

fisch, wie in Abbildung 4.6, veranschaulicht

werden.

𝑑 (𝐴,𝐵) = |𝑎1 − 𝑏1 | + |𝑎2 − 𝑏2 | 𝑥1

𝑥2

𝐴(𝑎1 | 𝑎2)

𝐵(𝑏1 | 𝑏2)|𝑎1 − 𝑏1 |

|𝑎2 − 𝑏2 |

Abb. 4.6: Manhattan Distanz im R2.

4.1.3.3 Minkowski-Distanz

Die Minkowski-Distanz ist eine Verallgemeinerung der Euklidischen Distanz (𝑝 = 2) und der

Manhattan-Distanz (𝑝 = 1). Für zwei Datenpunkte 𝐴,𝐵 ∈ R𝑛 und 𝑝 ∈ N wird der Abstand

𝑑 (𝐴,𝐵) folgendermaßen berechnet:

𝑑 (𝐴,𝐵) = 𝑝

√√
𝑛∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |𝑝 =

(
𝑛∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |𝑝
) 1

𝑝

4.1.3.4 Hamming-Distanz

Die Hamming-Distanz eignet sich für Abstandsangaben für Punkte mit nicht-numerischen

Merkmalen, wie z. B. Wahrheitswerte oder Zeichenketten. Der Abstand 𝑑 (𝐴,𝐵) wird in solchen

Fällen wie folgt berechnet:

𝑑 (𝐴,𝐵) =
𝑛∑︁
𝑖=1

𝑑 (𝑎𝑖 ,𝑏𝑖)

mit

𝑑 (𝑎𝑖 ,𝑏𝑖) =


1 falls 𝑎𝑖 ≠ 𝑏𝑖

0 falls 𝑎𝑖 = 𝑏𝑖

Beispiele:

1. Abstand zwischen zwei vierdimensionalen Datenpunkten mit boolschen Koordinaten:
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Datenpunkt 𝐴 Datenpunkt 𝐵

𝑎𝑖 𝑏𝑖 𝑑 (𝑎𝑖 ,𝑏𝑖)

𝑖 = 1 true true 0

𝑖 = 2 false true 1

𝑖 = 3 true false 1

𝑖 = 4 false false 0

𝑑 (𝐴,𝐵) = 0 + 1 + 1 + 0 = 2

2. Abstand zwischen zwei vierdimensionalen Wörtern 𝐴 und 𝐵 als Maß für die Überein-

stimmung:

Datenpunkt 𝐴 Datenpunkt 𝐵

𝑎𝑖 𝑏𝑖 𝑑 (𝑎𝑖 ,𝑏𝑖)

𝑖 = 1 H H 0

𝑖 = 2 A A 0

𝑖 = 3 U N 1

𝑖 = 4 S S 0

𝑑 (𝐴,𝐵) = 0 + 0 + 1 + 0 = 1

4.1.4 Normalisierung bzw. Standardisierung von numerischen Daten

Die Berechnung des Abstands zweier Datenpunkte 𝐴,𝐵 ∈ R𝑛 ergibt sich, unabhängig von der

Wahl des Abstandsmaßes, aus der Summe der Teilabstände, die sich aus den Unterschieden der

einzelnen Merkmalsausprägungen 𝑎𝑖 und 𝑏𝑖 ergeben. Dies führt je nach Anwendungsszenario

dazu, dass Größen mit unterschiedlichen Einheiten, z. B. durchschnittliche Wortlänge und

relative Vokalhäufigkeit (s. Abbildung 4.2), addiert werden müssen – „man addiert Äpfel und

Birnen“.

Beispiel (Berechnung von Abständen bei unterschiedlichen Größen)

Anhand der Merkmale Körpergewicht, Körpergröße und Körperfettanteil soll klassifiziert

werden, ob eine Person männlich oder weiblich ist. Dazu wird der Abstand der Daten-
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punkte 𝑋 und 𝑌 berechnet. Für die Abstandsberechnung wird die Manhattan-Distanz

angewendet.

Datenpunkt 𝐴 Datenpunkt 𝐵

Merkmal 𝑎𝑖 𝑏𝑖 |𝑎𝑖 − 𝑏𝑖 |

Körpergewicht 75 kg 62 kg 13 kg

Körpergröße 185 cm 171 cm 14 cm

Körperfettanteil 0,13 0,32 0,19

𝑑 (𝐴,𝐵) = 13 kg + 14 cm + 0,19 = ?

Die Skalierung der einzelnen Merkmale hat einen entscheidenden Einfluss auf die Abstandsbe-

rechnung. Werden zur Klassifizierung Merkmale herangezogen, deren Ausprägungsbereiche

sich erheblich voneinander unterscheiden, beeinflussen sich Distanzen der Datenpunkte unter-

schiedlich und können somit das Klassifizierungsergebnis beeinträchtigen.

Beispiel (Einfluss von Größen bei der Abstandsberechnung)

Zur Klassifizierung von Sprachen werden die Merkmale relative Vokalhäufigkeit (𝑚1) und

durchschnittliche Wortlänge (𝑚2) verwendet (s. Abschnitt 4.1.2). Während die Werte für

𝑚1 zwischen 0 und 1 liegen, können die Werte für 𝑚2 theoretisch beliebig groß werden.

Betrachtet man den Abstand zweier Datenpunkte (Texte) 𝐴 und 𝐵 unter Verwendung

der euklidischen Distanz, ergibt sich:

Datenpunkt 𝐴 Datenpunkt 𝐵

Merkmal 𝑎𝑖 𝑏𝑖 (𝑎𝑖 − 𝑏𝑖)2

𝑚1 0,34 0,38 0,042 = 0,0016

𝑚2 6,21 4,98 1,232 = 1,5129

𝑑 (𝐴,𝐵) =
√

0,0016 + 1,5129 = 1,2307
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Das Merkmal relative Vokalhäufigkeit trägt also sehr wenig zum Abstand der beiden

Datenpunkte bei und ist somit kaum für die Klassifizierung relevant.

Zur Lösung dieser Probleme müssen die verwendeten Daten normalisiert werden.

4.1.4.1 Min-Max-Normalisierung

Bei der Min-Max-Normalisierung werden alle auftretenden Merkmalsausprägungen auf das

Intervall [0; 1] abgebildet. Für ein Merkmal 𝑚 wird dazu der größte (max𝑚) und der kleinste

(min𝑚) in den Trainingsdaten vorkommende Wert aller Merkmalsausprägungen ermittelt.

Anschließend wird jede Merkmalsausprägung 𝑥𝑚 mit folgender Formel zu 𝑥𝑚 normalisiert:

𝑥𝑚 =
𝑥𝑚 − min𝑚

max𝑚 −min𝑚

Durch die Abbildung auf das Intervall [0; 1] fallen unterschiedliche Skalierungen der Merkmale

nicht mehr ins Gewicht. Außerdem wird das Problem der Größen mit unterschiedlichen

Einheiten behoben. Einheiten spielen keine Rolle mehr, da es sich bei der normalisierten

Größe 𝑥𝑚 um ein relatives Maß handelt. Problematisch ist die Min-Max-Normalisierung, falls

es in den Trainingsdaten extreme Ausreißer bei einigen Merkmalsausprägungen gibt. Dies

führt dazu, dass der Großteil der Daten in ein sehr kleines Teilintervall von [0; 1] abgebildet

wird, was dazu führen kann, dass solche Merkmale bei der Abstandsberechnung kaum ins

Gewicht fallen (Ertel, 2021, S. 228).

4.1.4.2 Standardisierung / Z-Score-Normalisierung

Die Standardisierung löst das Problem der extremen Ausreißer. Hierzu werden für ein Merkmal

𝑚 zunächst der Mittelwert 𝜇𝑚 all seiner Ausprägungen 𝑥𝑚 und die dazugehörige Standardab-

weichung 𝜎𝑚 bestimmt. Anschließend wird jede Merkmalsausprägung 𝑥𝑚 mit folgender Formel

zu 𝑥𝑚 normalisiert:

𝑥𝑚 =
𝑥𝑚 − 𝜇𝑚

𝜎𝑚

Das standardisierte Merkmal hat damit den Mittelwert 0 und die Standardabweichung 1. Die

Werte für 𝑥𝑚 schwanken nun um 0 und können somit auch negativ werden, was jedoch i. A.

unproblematisch ist. Auch hier ist die Problematik der unterschiedlichen Einheiten behoben.
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Im Gegensatz zur Min-Max-Normalisierung liegen die normalisierten Merkmalsausprägungen

nicht in einem fest definierten Intervall, das Problem der unterschiedlichen Skalierung wird

dennoch behoben (Ertel, 2021, S. 228).

4.1.5 Der Lernprozess des k-nächste-Nachbarn-Algorithmus

Bevor ein KI-System unter Verwendung des 𝑘-nächste-Nachbarn-Algorithmus neue ungelabelte

Daten zuverlässig klassifizieren kann, muss es verschiedene Phasen durchlaufen:

• Phase 0: Vorbereitung des Lernprozesses

• Phase 1: Training des Modells

• Phase 2: Automatisierte Bestimmung des optimalen Werts für 𝑘

• Phase 3: Testen des Modells

4.1.5.1 Phase 0: Vorbereitung des Lernprozesses

Bevor mit dem Training des Modells begonnen werden kann, müssen zunächst einige Vorbe-

reitungen getroffen werden:

1. Bereitstellung und Aufteilung bereits gelabelter Daten

Als Verfahren des überwachten maschinellen Lernens müssen zunächst gelabelte Daten

zur Verfügung gestellt werden, mit deren Hilfe ein neuer Datenpunkt anhand des in

Abschnitt 4.1.2 beschriebenen Verfahrens klassifiziert werden kann. Da für die weiteren

Phasen des Lernprozesses jeweils eigene Datensätze benötigt werden, müssen die verfüg-

baren gelabelten Daten aufgeteilt werden.

Die Trainingsdaten werden dazu verwendet, einen neuen Datenpunkt anhand des in

Abschnitt 4.1.2 beschriebenen Verfahrens zu klassifizieren. Die Validierungsdaten werden

zur Optimierung des Modells, insbesondere zur automatisierten Bestimmung des opti-

malen Werts für den Hyperparameter 𝑘 benötigt (s. Abschnitt 4.1.5.3). Die Testdaten

verwendet man, um die Zuverlässigkeit des trainierten und optimierten Modells zu

testen.
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2. Festlegung des Hyperparameters 𝑘

Der Hyperparameter 𝑘 legt fest, wie viele der nächsten Nachbarn zur Klassifizierung

eines neuen Datenpunktes herangezogen werden. Da die Klassifizierung durch eine

Mehrheitsentscheidung unter den nächsten Nachbarn erfolgt (s. Abschnitt 4.1.2) und ein

Gleichstand dies verhindert, sollte zumindest bei der Verwendung von zwei Klassen ein

ungerader Wert für 𝑘 gewählt werden. Um jedoch das bestmögliche Klassifizierungsergeb-

nisse zu erzielen, empfiehlt es sich, 𝑘 automatisiert mithilfe eines Optimierungsverfahrens

zu bestimmen (s. Abschnitt 4.1.5.3). Ansonsten können ungünstig gewählte Werte für

𝑘 zu Problemen bei der Klassifizierung führen (s. Beispiel zur Klassifizierung von

Schwertlilien in Abschnitt 4.1.6.2).

4.1.5.2 Phase 1: Training des Modells

Die Trainingsphase des 𝑘-nächste-Nachbarn-Algorithmus beschränkt sich auf das Bereitstellen

und Laden der Trainingsdaten. Da das Modell mit diesem einfachen Schritt bereits „trainiert“

ist, zählt man den 𝑘-nächste-Nachbarn-Algorithmus zu den Verfahren des „Lazy Learning“

(faulen Lernens).

4.1.5.3 Phase 2: Automatisierte Bestimmung des „optimalen“ Werts für 𝑘

4.1.5.3.1 Phase 2 mithilfe von Validierungsdaten

Der „optimale“ Wert für den Hyperparameter 𝑘 kann mithilfe der Validierungsdaten automa-

tisiert bestimmt werden. Dieser Wert wird anhand des folgenden Verfahrens bestimmt:

Für alle Validierungsdatenpunkte 𝑉𝑖:

Klassifiziere𝑉𝑖 anhand des 𝑘-nächste-Nachbarn-Algorithmus für 𝑘 ∈ {1; 2; . . . ; 𝑘max}1.

Notiere für alle 𝑘-Werte, ob das Klassifizierungsergebnis von 𝑉𝑖 korrekt ist, also mit

dem Label übereinstimmt.

Wähle für 𝑘 einen Wert, bei dem die Klassifizierungsergebnisse am häufigsten

korrekt sind.

1Der Wert 𝑘max sollte deutlich kleiner als die Mächtigkeit der kleinsten Klasse der Trainingsdaten sein.
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Beispiel (Bestimmung des „optimalen“ 𝑘 mithilfe von Validierungsdaten)

In diesem Beispiel werden zwei Klassen betrachtet, weshalb lediglich ungerade Werte für

𝑘 in Betracht gezogen werden. Der blau gelabelte Validierungsdatenpunkt 𝑉1 wird für

verschiedene Werte von 𝑘 klassifiziert (s. Abbildung 4.7).
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Abb. 4.7: Klassifizierung des Validierungsdatenpunkts 𝑉1 für 𝑘 = 1,3,5.

Ergebnis nach dem ersten Durchlauf von Schritt 1:

𝑘 = 1 𝑘 = 3 𝑘 = 5 . . .

𝑉1 falsch korrekt korrekt ...

Erhält man nach der Klassifizierung weiterer Datenpunkte (nicht in der Abbildung dar-

gestellt) die folgenden Ergebnisse, wird 𝑘 = 3 als optimaler Wert für den Hyperparameter

𝑘 gewählt.

𝑘 = 1 𝑘 = 3 𝑘 = 5 . . .

𝑉1 falsch korrekt korrekt ...

𝑉2 korrekt korrekt korrekt ...

𝑉3 falsch korrekt falsch ...

Anzahl korrekt 1 3 2 . . .
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4.1.5.3.2 Phase 2 mithilfe der Kreuzvalidierung

Die Aufteilung der gelabelten Daten in drei disjunkte Datenmengen (s. Abschnitt 4.1.5.1) hat

den Nachteil, dass die Validierungsdaten nach der Bestimmung des „optimalen“ Werts für 𝑘

nicht mehr weiterverwendet werden können. Im Rahmen der Kreuzvalidierung (engl. cross-

validation) kann jedoch erreicht werden, dass auch die Validierungsdaten als Trainingsdaten

zur Verfügung stehen.

Anstelle von drei Datenmengen werden die gelabelten Daten hierbei zunächst in zwei Daten-

mengen 𝑋 und 𝑌 aufgeteilt, wobei 𝑌 , wie bisher, die Testdaten bildet. Die Datenmenge 𝑋

wird nun in 𝑗 ∈ N gleich große Teilmengen 𝑋1, 𝑋2, . . . , 𝑋 𝑗 aufgeteilt. In Abbildung 4.8 ist eine

solche Aufteilung für 𝑗 = 4 zu sehen.

gelabelte Daten

X Y

𝑋1 𝑋2 𝑋3 𝑋4

Abb. 4.8: Beispielhafte Aufteilung der gelabelten Daten für 𝑗 = 4.

Nun wird in mehreren Iterationen jede Teilmenge 𝑋𝑖 einmal als Validierungsdatensatz ver-

wendet, die übrigen Datensätze aus 𝑋 bilden zusammen die Trainingsdaten. Enthält jedes 𝑋𝑖

genau einen Datenpunkt, so spricht man vom Leave-One-Out-Verfahren. Dazu wird das

bisherige Verfahren angepasst:

Für alle Trainingsdatenpunkte 𝑋𝑖:

Klassifiziere 𝑋𝑖 anhand des 𝑘-nächste-Nachbarn-Algorithmus für 𝑘 ∈ {1; 2; . . . ; 𝑘max}.

Notiere für alle 𝑘-Werte, ob das Klassifizierungsergebnis von 𝑋𝑖 korrekt ist, also mit

dem Label übereinstimmt.
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Wähle für 𝑘 einen Wert, bei dem die Klassifizierungsergebnisse am häufigsten

korrekt sind.

Beispiel (Bestimmung des „optimalen“ 𝑘 mithilfe von Leave-One-Out)

Anhand der in Abbildung 4.9 dargestellten Datenmenge soll das Leave-One-Out-Verfahren

demonstriert werden. Da die Klassifizierung in eine von zwei Klassen erfolgen soll, kommen

lediglich ungerade Werte für 𝑘 in Betracht.
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Abb. 4.9: Ausgangssituation des Leave-One-Out-Verfahrens.

Dazu wird zunächst der Datenpunkt 𝑋1 (rotes Label) zufällig als Validierungsdatenpunkt

ausgewählt und anhand der übrigen Datenpunkte klassifiziert (s. Abbildung 4.10).
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𝑘 = 1

𝑘 = 3

𝑘 = 5

Abb. 4.10: Visualisierung der Klassifizierung von 𝑋1 für 𝑘 = 1,3,5 nach dem Leave-One-Out-

Verfahren.
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Ergebnis nach dem ersten Durchlauf von Schritt 1:

𝑘 = 1 𝑘 = 3 𝑘 = 5 . . .

𝑋1 falsch falsch korrekt ...

Anschließend wird 𝑋2 (blaues Label) aus den Trainingsdaten als Validierungsdaten-

punkt ausgewählt und mithilfe aller übrigen Punkte aus den Trainingsdaten klassifiziert

(s. Abbildung 4.11).
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■
𝑋2

𝑘 = 1

𝑘 = 3 𝑘 = 5

Abb. 4.11: Visualisierung der Klassifizierung von 𝑋2 für 𝑘 = 1,3,5 nach dem Leave-One-Out-

Verfahren.

Die Ergebnistabelle erweitert sich somit um eine Zeile:

𝑘 = 1 𝑘 = 3 𝑘 = 5 . . .

𝑋1 falsch falsch korrekt ...

𝑋2 falsch korrekt korrekt ...

Dieses Vorgehen wird nun für die restlichen Datenpunkte durchgeführt. Anschließend

wird, wie in Abschnitt 4.1.5.3.1, der Wert für 𝑘 gewählt, der am häufigsten zu einer

korrekten Klassifizierung führt.
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4.1.5.4 Phase 3: Testen des Modells

In dieser Phase wird überprüft, ob das in den vorangegangenen Phasen erstellte Modell

auch „unbekannte“ Daten zuverlässig klassifizieren kann. Dazu ist es erforderlich, dass die

bereitgestellten Testdaten nicht bereits in den Trainings- oder Validierungsdaten verwendet

wurden.

Die Qualität bzw. Zuverlässigkeit der Klassifizierung kann anhand verschiedener Gütemaße

(s. Entscheidungsbaum, Abschnitt 3.1.4.1) bewertet werden. Mithilfe einer Konfusionsmatrix

können die Ergebnisse der Klassifizierung der Testdaten veranschaulicht werden (s. Entschei-

dungsbaum, Abschnitt 3.1.4.2). Sofern das Modell in dieser Phase zuverlässige Ergebnisse

liefert, kann es zur Klassifizierung ungelabelter Daten verwendet werden.

4.1.6 Einflussfaktoren und Grenzen

Da der 𝑘-nächste-Nachbarn-Algorithmus ein Verfahren des überwachten maschinellen Lernens

ist, hängt sein Erfolg von den verwendeten Trainingsdaten ab. Ein Vorteil gegenüber anderen

Verfahren liegt darin, dass die Trainingsphase, die lediglich aus der Bereitstellung der Trai-

ningsdaten besteht, nicht aufwendig ist. Da bei der Klassifizierung jedoch der Abstand zu

jedem Trainingsdatenpunkt berechnet wird, wächst der Rechenaufwand linear mit der Größe

des Trainingsdatensatzes. Für die Klassifizierung mit 𝑛 Trainingsdatenpunkten beträgt die

Laufzeit des Algorithmus O(𝑛) (Russel & Norvig, 2012, S. 858 f). Darüber hinaus kann die

Beschaffenheit der Trainingsdaten die Zuverlässigkeit der Ergebnisse beeinflussen.

4.1.6.1 Grenzen aufgrund der Beschaffenheit der Daten

Je mehr Dimensionen verwendet werden, desto unzuverlässiger können die Klassifikationser-

gebnisse werden, d. h. mit zunehmender Dimensionalität 𝑑 des Merkmalsraums werden die

Unterschiede zwischen der maximalen gemessenen Distanz (𝐷max) und der minimalen gemes-

senen Distanz (𝐷min) zweier beliebiger 𝑑-dimensionaler Datenpunkte geringer. Es lässt sich

zeigen, dass sogar eine Konvergenz vorliegt: 𝐷min
𝑑→∞−−−−→ 𝐷max. Folglich haben zwei beliebige

Datenpunkte jeweils nahezu die gleiche Distanz. Da der 𝑘-nächste-Nachbarn-Algorithmus

jedoch auf der Abstandsberechnung basiert, kann er nicht mehr zuverlässig klassifizieren. Man
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spricht in diesem Zusammenhang vom Fluch der Dimensionalität (Russel & Norvig, 2012,

S. 858 f).

Eine weitere Grenze des Modells ist in der Korrelation der Merkmale zu finden. Korrelieren die

Merkmale der Daten nicht bzw. nur schwach, führt der Algorithmus zwar eine Klassifizierung

durch, diese ist jedoch nicht zuverlässig. Das Testen des Modells (s. Abschnitt 4.1.5.4) ist

deshalb von besonders hoher Bedeutung.

Eine ungleichmäßige Verteilung der Trainingsdaten, in der eine oder mehrere Klassen über-

repräsentiert sind, führt ebenfalls zu unzuverlässigen Ergebnissen. Insbesondere für größere

Werte für den Hyperparameter 𝑘 wird ein neuer Datenpunkt mit einer höheren Wahrschein-

lichkeit einer der dominierenden Klassen zugeordnet, da deren Datenpunkte häufiger unter

den 𝑘 nächsten Nachbarn vertreten sind. Bestehen die Trainingsdaten beispielsweise aus elf

blauen und lediglich zwei roten Trainingsdatenpunkten (s. Abbildung 4.12), wird ein neuer

Datenpunkt unabhängig von seiner Lage für 𝑘 > 4 immer als blau klassifiziert.
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Abb. 4.12: Ungleichmäßige Verteilung der Trainingsdaten auf einzelne Klassen.

Folglich sollte auf eine möglichst ausgewogene Verteilung der Trainingsdaten auf die einzelnen

Klassen geachtet werden. Insbesondere ist es wichtig, dass 𝑘 deutlich kleiner als die Mächtigkeit

der kleinsten in den Trainingsdaten vertretenen Klasse ist.

Ein Datenpunkt kann darüber hinaus durch Trainingsdaten falsch klassifiziert werden, wenn

diese nicht die Gesamtheit der Daten widerspiegeln. Bestehen bei der Sprachenerkennung die

Trainingsdaten einer Sprache beispielsweise nur aus Textabschnitten eines einzigen Buchs, so
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repräsentieren diese den Stil und den Sprachgebrauch des Autors, was zu Problemen bei der

Klassifizierung anderer Texte führen kann.

4.1.6.2 Grenzen in Bezug auf den Hyperparameter k

Abgesehen von Problemen bei der Beschaffenheit der Daten kann die Wahl des Hyperpara-

meters 𝑘 die Zuverlässigkeit der Klassifizierung beeinträchtigen. Wird 𝑘 zu klein gewählt,

werden nur wenige Trainingsdatenpunkte zur Klassifizierung herangezogen, sodass Ausreißer

das Ergebnis stark beeinflussen und somit verfälschen können. Man spricht in diesem Fall von

Überanpassung (overfitting).

Das folgende Beispiel basiert auf den Irisdaten (Fisher, 1936), einer bekannten Datenmenge,

mit der man Schwertlilien anhand von Eigenschaften ihrer Blätter einer von drei Arten (Iris

setosa, Iris virginica oder Iris versicolor) zuordnen kann. In Abbildung 4.13 wurden die Da-

tenpunkte unter Verwendung der beiden Merkmale „Kelchblattlänge“ und „Kelchblattbreite“

dargestellt. Zusätzlich wurde die Decision Surface für 𝑘 = 1 farblich hervorgehoben. Eine

Decision Surface veranschaulicht für jeden beliebigen Punkt im Merkmalsraum die jeweiligen

Klassifizierungsergebnisse als unterschiedliche Bereiche in Abhängigkeit von 𝑘 (Herbold, 2022).

Ein Datenpunkt, der im violetten Bereich liegt, würde beispielsweise als Iris setosa klassifiziert

werden.

Abb. 4.13: Decision Surface für 𝑘 = 1.
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In der Decision Surface für 𝑘 = 1 (s. Abbildung 4.13) wurden zwei Bereiche (durch Pfeile)

hervorgehoben, in denen jeweils ein Ausreißer einen Bereich der Decision Surface erzeugt, in

dem man ein anderes Klassifizierungsergebnis erwarten würde. Durch das zu klein gewählte

𝑘 kommt es zu einer Überanpassung, die das Klassifizierungsergebnis verfälschen kann. In

Abbildung 4.14 sieht man (durch einen Pfeil hervorgehoben), dass für ein groß gewähltes 𝑘

(hier 𝑘 = 20) ein einzelner grüner Bereich innerhalb des sonst ausschließlich gelben Bereichs

entstanden ist. Da in diesem Bereich kein einziger grüner Datenpunkt enthalten ist, wird

die Klassifizierung hauptsächlich durch weiter entfernt liegende Punkte bestimmt. Auch sehr

große 𝑘-Werte können also die Zuverlässigkeit beeinträchtigen.

Abb. 4.14: Decision Surface für 𝑘 = 20.

Folglich sollte der Wert für 𝑘 möglichst automatisiert bestimmt (s. Abschnitt 4.1.5.3) und die

Zuverlässigkeit des Modells anhand von Testdaten überprüft werden.

4.1.7 Exkurs: Regression mithilfe des k-nächste-Nachbarn-Algorithmus

Während bei der Klassifizierung einem Datenpunkt anhand seiner Merkmale eine Klasse zuge-

ordnet wird, erfolgt bei einer Regression die Zuweisung einer reellen Zahl. Ausgehend von den

Merkmalen (unabhängige Variablen) kann die Ausprägung eines davon abhängigen Merkmals

(abhängige Variable) berechnet werden. Die abhängige Variable eines neuen Datenpunkts 𝑃
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kann nach der folgenden Vorgehensweise mithilfe des 𝑘-nächste-Nachbarn-Algorithmus ermit-

telt werden:

1. Bestimme die 𝑘 nächsten Nachbarn, die in Bezug auf die unabhängigen Variablen den

geringsten Abstand zu 𝑃 haben.

2. Berechne das arithmetische Mittel der Werte der abhängigen Variablen dieser Nachbarn.

3. Weise der abhängigen Variablen von 𝑃 den Wert des arithmetischen Mittels zu.

Das folgende Beispiel verwendet zwei Variablen, die unabhängige Variable 𝑥 und abhängige

Variable 𝑦. Von Datenpunkt 𝑃 ist lediglich die 𝑥-Koordinate mit 𝑥 = 4 bekannt. Anhand der

Trainingsdatenpunkte (blau markiert) soll der Wert der 𝑦-Koordinate mithilfe des 𝑘-nächste-

Nachbarn-Algorithmus berechnet werden (s. Abbildung 4.15).

𝑥

𝑦

1 2 3 4 5 6

1

2

3

4

𝐴(0,5 | 1)

𝐵(1 | 2)

𝐶 (2 | 1,5)

𝐷 (3 | 2,5)

𝐸 (4,5 | 4,5)

𝐹 (5,5 | 2)

𝐺 (6,5 | 4)

𝑃(4 |?)

Abb. 4.15: Beispiel für eine Regression mit dem 𝑘-nächste-Nachbarn-Algorithmus.

Für 𝑘 = 1 ist 𝐸 (4,5 | 4,5) der nächste Nachbar. Da nur ein Datenpunkt verwendet wird,

entspricht das arithmetische Mittel der 𝑦-Koordinate von 𝐸 . 𝑃 wird also 𝑦 = 4,5 zugeordnet
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(s. Abbildung 4.16). Der Funktionsgraph (grau dargestellt) zeigt das Ergebnis der Regression

für alle 𝑥-Koordinaten:

𝑥

𝑦

1 2 3 4 5 6

1

2

3

4

𝐴(0,5 | 1)

𝐵(1 | 2)

𝐶 (2 | 1,5)

𝐷 (3 | 2,5)

𝐸 (4,5 | 4,5)

𝐹 (5,5 | 2)

𝐺 (6,5 | 4)
𝑃(4 | 4,5)

Abb. 4.16: Regression für 𝑘 = 1.

Für 𝑘 = 2 sind die Punkte 𝐸 (4,5 | 4,5) und 𝐷 (3 | 2,5) die drei nächsten Nachbarn (s. Abbil-

dung 4.17). Für die 𝑦-Koordinate von 𝑃 ergibt sich:

𝑦𝑃 =
𝑦𝐸 + 𝑦𝐷

2 =
4,5 + 2,5

2 = 3,5

Für 𝑘 = 3 sind die Punkte 𝐸 (4,5 | 4,5), 𝐷 (3 | 2,5) und 𝐹 (5,5 | 2) die beiden nächsten Nachbarn

(s. Abbildung 4.18). Für die 𝑦-Koordinate von 𝑃 ergibt sich:

𝑦𝑃 =
𝑦𝐸 + 𝑦𝐷 + 𝑦𝐹

3 =
4,5 + 2,5 + 2

3 = 3

Ein typisches Anwendungsbeispiel für eine Regression ist die Vorhersage von Hauspreisen

anhand von Merkmalen, wie z. B. der Wohnfläche, des Baujahrs und der Anzahl an Zimmern.
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𝑥

𝑦
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𝐴(0,5 | 1)

𝐵(1 | 2)

𝐶 (2 | 1,5)

𝐷 (3 | 2,5)

𝐸 (4,5 | 4,5)

𝐹 (5,5 | 2)

𝐺 (6,5 | 4)

𝑃(4 | 3,5)

Abb. 4.17: Regression für 𝑘 = 2.

𝑥

𝑦
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𝐴(0,5 | 1)

𝐵(1 | 2)

𝐶 (2 | 1,5)

𝐷 (3 | 2,5)

𝐸 (4,5 | 4,5)

𝐹 (5,5 | 2)

𝐺 (6,5 | 4)

𝑃(4 | 3)

Abb. 4.18: Regression für 𝑘 = 3.



4.2 Didaktische Hinweise / Bezug zum Lehrplan 103

4.2 Didaktische Hinweise / Bezug zum Lehrplan

4.2.1 Einordnung in den Lehrplan

Gemäß LehrplanPLUS wählen die Lehrkräfte als Beispiel für einen Algorithmus maschinel-

len Lernens entweder den Entscheidungsbaum-Algorithmus oder den 𝑘-nächste-Nachbarn-

Algorithmus aus. Im Hinblick auf den Entscheidungsbaum-Algorithmus wird die Kompeten-

zerwartung noch zwischen der Informatik und der spät beginnenden Informatik wie folgt

unterschieden:

• Informatik 11 (NTG)

Die Schülerinnen und Schüler erläutern die Funktionsweise eines ausgewählten Algo-

rithmus maschinellen Lernens (𝑘-nächste-Nachbarn-Algorithmus oder Entscheidungsbaum-

Algorithmus) allgemein und an konkreten Beispielen.

• Spät beginnende Informatik 11 (HG, SG, MuG, SWG)

Die Schülerinnen und Schüler erläutern die Idee eines ausgewählten Algorithmus maschi-

nellen Lernens (𝑘-nächste-Nachbarn-Algorithmus oder Entscheidungsbaum-Algorithmus)

an konkreten Beispielen.

Der Lehrplan fordert also ein Verständnis der allgemeinen Funktionsweise (NTG) bzw. der Idee

(spät beginnend) des 𝑘-nächste-Nachbarn-Algorithmus anhand konkreter Beispiele. Darüber

hinaus erwerben die Schülerinnen und Schüler bei der Behandlung des 𝑘-nächste-Nachbarn-

Algorithmus zusätzlich folgende Kompetenz:

Die Schülerinnen und Schüler analysieren den Einfluss von Trainingsdaten und Para-

metern auf die Zuverlässigkeit der Ergebnisse eines Verfahrens maschinellen Lernens,

ggf. unter Verwendung eines geeigneten Werkzeugs.

Die Bedeutung der Beschaffenheit gelabelter Daten (s. Abschnitt 4.1.6) stellt eine Grundlage

bei der Arbeit mit dem 𝑘-nächste-Nachbarn-Algorithmus dar. In diesem Zusammenhang

kann auch deren Verwendung zu unterschiedlichen Zwecken (Trainings-, Validierungs- und

Testdaten) an geeigneter Stelle thematisiert werden. Der Hyperparameter 𝑘 ist für die Qualität

der Klassifizierungsergebnisse zentral und sollte entsprechend behandelt werden. Neben dem
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Aufzeigen möglicher Probleme (s. Abschnitt 4.1.6) sollte auch auf ein Optimierungsverfahren

für 𝑘 eingegangen werden. Dies kann mit dem „Demonstrator für maschinelles Lernen“ simuliert

werden. Dieses Werkzeug eignet sich sowohl zur Demonstration der Funktionsweise des 𝑘-

nächste-Nachbarn-Algorithmus als auch zur Analyse der Zuverlässigkeit der Klassifizierung.

Neben der manuellen Festlegung verschiedener 𝑘-Werte beinhaltet der Demonstrator mit dem

Leave-One-Out-Verfahren (s. Abschnitt 4.1.5.3.2) ein Verfahren zur Berechnung des optimalen

Werts für 𝑘.

4.2.2 Durchführung

Die nachfolgenden didaktischen Hinweise beziehen sich auf die Kompetenzerwartungen des

NTG. Für diesen Themenbereich werden ca. sechs Unterrichtsstunden, für die spät begin-

nende Informatik ca. vier Unterrichtsstunden vorgeschlagen. Im Abschnitt 4.2.2.7 sind die

Stellen aufgeführt, an denen sich in der spät beginnenden Informatik Unterschiede in der

Herangehensweise ergeben können.

4.2.2.1 Einstieg

Als Einstieg in die Sequenz bietet es sich an, die Schülerinnen und Schüler die Grundidee des

𝑘-nächste-Nachbarn-Algorithmus intuitiv erleben zu lassen.

Es wird vorgeschlagen, dazu das Anwendungsbeispiel der Sprachenerkennung von Texten zu

verwenden. Anhand von Beispieltexten verschiedener Sprachen, die digital oder als Arbeits-

blatt zur Verfügung gestellt werden (s. Abschnitt 4.3.1.1), identifizieren die Schülerinnen und

Schüler Merkmale, anhand derer man einem Text eine Sprache zuordnen könnte. Dabei wird

angenommen, dass Texte, die in derselben Sprache verfasst sind, ähnliche Merkmalsausprägun-

gen besitzen. Zur besseren Veranschaulichung erfolgt eine Fokussierung auf zwei Merkmale,

um die Datenpunkte in einem zweidimensionalen Koordinatensystem darstellen zu können.

Dies erfolgt im vorliegenden Vorschlag mit den beiden Merkmalen relative Vokalhäufigkeit

und durchschnittliche Wortlänge.

Tragen die Schülerinnen und Schüler Datenpunkte, die Texte einer Sprache repräsentieren, in

ein zweidimensionales Koordinatensystem ein, wird die Ähnlichkeit von zwei Datenpunkten

aus ihren Abständen ersichtlich. Datenpunkte, die Texte der gleichen Sprache repräsentieren,
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liegen in der Regel nahe beieinander, sind also „benachbart“. Tragen die Schülerinnen und

Schüler nun einen Datenpunkt ein, der zu einem Text einer unbekannten Sprache gehört,

weisen sie ihm die Sprache zu, die die Datenpunkte in seiner „Nachbarschaft“ aufweisen. Dabei

sollte eine Unterscheidung zwischen gelabelten und ungelabelten Daten erfolgen.

4.2.2.2 Funktionsweise des k-nächste-Nachbarn-Algorithmus

Da ein Computer im Gegensatz zu einem Menschen nicht intuitiv arbeiten kann, ergibt sich

die Notwendigkeit, einen Klassifizierungsalgorithmus zu erarbeiten, der anhand von gelabelten

Daten lernt, Datenpunkte zu klassifizieren. Dies kann mit folgendem Beispiel verdeutlicht

werden: Anhand der Darstellung und unter Zuhilfenahme einer tabellarischen Auflistung der

Abstände (s. Abschnitt 4.3.1.2) versuchen die Schülerinnen und Schüler nun, weitere noch

nicht gelabelte Datenpunkte zu klassifizieren. Dabei sollte beachtet werden, dass darunter

auch Datenpunkte sind, die nicht offensichtlich zugeordnet werden können. Bezüglich der

Berechnung des Abstands zweier Punkte im zweidimensionalen Raum reicht ein Verweis auf

den Satz des Pythagoras aus, den die Schülerinnen und Schüler aus dem Mathematikunterricht

der 9. Jahrgangsstufe kennen. Eine umfassende Thematisierung verschiedener Abstandsmaße

(s. Abschnitt 4.1.3) führt an dieser Stelle sicherlich zu weit.

Mit diesem Vorgehen wird den Schülerinnen und Schülern deutlich, dass ein Algorithmus zur

Klassifizierung erforderlich ist. Die Grundidee des 𝑘-nächste-Nachbarn-Algorithmus (s. Ab-

schnitt 4.1.2) kann mit dem „Demonstrator für maschinelles Lernen“ erarbeitet werden

(s. Abschnitt 4.3.2). In diesem Zusammenhang werden die Trainingsdaten und der Hyper-

parameter 𝑘 erstmalig thematisiert. Für die Sprachenerkennung steht ein Datensatz für die

Sprachen Deutsch, Englisch und Französisch bereit (s. Abschnitt 4.3.2.1). Nach einer kur-

zen Einführung durch die Lehrkraft sollten die Schülerinnen und Schüler das Programm

eigenständig ausprobieren und selbst ausgewählte Texte klassifizieren. Für die Einführung

in das Programm kann bei Bedarf ein Einführungsvideo verwendet werden (Materialordner:

Einführung Sprachenerkennung Klassifizierung.mp4).

Da die Schülerinnen und Schüler die Sprache der gewählten Beispiele kennen und somit

sofort erkennen, ob die Klassifizierung korrekt ist, sollten sie auch mögliche Gründe für

Fehlklassifizierungen sammeln. Dabei wird die Bedeutung des Hyperparameters 𝑘 für den

Erfolg der Klassifizierung deutlich. Einerseits könnten „Gleichstände“ bei manchen 𝑘-Werten
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auftreten. Andererseits kommt es bei niedrigen 𝑘-Werten zu falschen Klassifizierungen, wenn

die Datenpunkte in der Nähe von Ausreißern liegen. Ggf. kann dies durch die Klassifizierung

entsprechender Textbeispiele zusätzlich verdeutlicht werden (Ordner „Demonstrationsbeispiele

Trainingsdaten“ im Materialordner). Daran anschließend bietet es sich an, weitere Grenzen

des Algorithmus zu thematisieren. Durch eine entsprechende Anpassung der Trainingsdaten

kann sowohl die Notwendigkeit einer möglichst gleichmäßigen Verteilung der Trainingsdaten

als auch eine Wahl eines Werts für 𝑘, der kleiner als die Mächtigkeit der kleinsten Klasse ist,

demonstriert werden.

Durch Hinzunahme der Datensätze der spanischen Trainingsdaten (Ordner „Demonstrations-

beispiele Trainingsdaten“ im Materialordner) kann außerdem verdeutlicht werden, dass eine

fehlende Trennschärfe zwischen den Merkmalsausprägungen zweier Klassen die Klassifizierung

zusätzlich erschwert. Somit wird auch der Einfluss der Trainingsdaten auf das Ergebnis deut-

lich. Wichtig ist dabei, dass die Schülerinnen und Schüler durch ihr Experimentieren erkannt

haben, dass sowohl die Wahl von 𝑘 als auch die Auswahl der Trainingsdaten für die richtige

Klassifizierung eines neuen Datenpunkts eine entscheidende Rolle spielen.

Im Anschluss rekapitulieren die Schülerinnen und Schüler die Schritte des 𝑘-nächste-Nachbarn-

Algorithmus und formulieren den Algorithmus allgemein. Dabei bietet sich die folgende

Reihenfolge an:

1. Vorbereitung

a. Trainingsdaten bereitstellen

b. Hyperparameter 𝑘 festlegen2

2. Abstand des neuen Datenpunkts zu allen Trainingsdatenpunkten berechnen

3. Trainingsdaten nach Abstand aufsteigend sortieren

4. Neuen Datenpunkt anhand des Parameters 𝑘 klassifizieren

Die Klassifizierung mithilfe von lediglich zwei Merkmalen hat den Vorteil, dass zweidimensio-

nale Datenpunkte vorliegen, die grafisch veranschaulicht werden können. In Bezug auf die

Klassifizierung von Sprachen stellt dies jedoch ein stark vereinfachtes Verfahren dar. Zur
2Da 𝑘 im „Demonstrator für maschinelles Lernen“ nach dem letzten Schritt variiert werden kann und zu

diesem Zeitpunkt noch kein Verfahren zur automatisierten Bestimmung bekannt ist, kann die Festlegung

von 𝑘 zu diesem Zeitpunkt auch Schritt 3 zugeordnet werden.
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Darstellung einer realistischeren Herangehensweise mit einer Vielzahl an Merkmalen kann das

folgende Video vorgeführt werden:

https://experiments.withgoogle.com/visualizing-high-dimensional-space

4.2.2.3 Wahl des „optimalen“ Werts für k

Bereits bei der Erarbeitung der Grundidee des 𝑘-nächste-Nachbarn-Algorithmus dürfte den

Schülerinnen und Schülern die zentrale Bedeutung des Hyperparameters 𝑘 bewusst geworden

sein. Dabei stellt sich die Frage, wie man den bestmöglichen Wert für 𝑘 bestimmen kann.

Aufgrund der bisherigen Erfahrungen der Schülerinnen und Schüler mit dem „Demonstrator

für maschinelles Lernen“ liegt die Idee nahe, mehrere bereits gelabelte Datenpunkte unter Ver-

wendung von jeweils verschiedenen Werten für 𝑘 zu klassifizieren und den Wert für 𝑘 zu wählen,

der am häufigsten zum Erfolg führt. Daran anknüpfend kann das Leave-One-Out-Verfahren

(s. Abschnitt 4.1.5.3.2)3 unter Zuhilfenahme des „Demonstrators für maschinelles Lernen“

vorgestellt werden. Nach einer kurzen Erläuterung des Verfahrens und der Demonstration

einiger weniger Mikroschritte (s. Abschnitt 4.3.2.2) können die Schülerinnen und Schüler

selbstständig den für den vorliegenden Datensatz optimalen Wert für 𝑘 bestimmen. In diesem

Zusammenhang sollte darauf hingewiesen werden, dass der Datenpunkt, der im jeweils aktuel-

len Schritt für verschiedene Werte für 𝑘 klassifiziert wird, nicht mehr zu den Trainingsdaten

gehört. Die Begriffe Trainings- und Validierungsdaten können somit voneinander abgegrenzt

werden.

4.2.2.4 Normalisierung und Abstandsmaße

Nachdem die Schülerinnen und Schüler den 𝑘-nächste-Nachbarn-Algorithmus kennengelernt

haben, sollte die Problematik unterschiedlich skalierter Merkmale angesprochen werden.

Beispielsweise hat im Anwendungsbeispiel Sprachenerkennung das Merkmal durchschnittliche

Wortlänge einen erheblich größeren Einfluss auf den berechneten Abstand als das Merkmal

relative Vokalhäufigkeit. In diesem Zusammenhang kann die Normalisierung von Daten mithilfe

der Min-Max-Normalisierung anhand eines Beispiels (s. Abschnitt 4.3.3) thematisiert werden

3Eine Thematisierung der Kreuzvalidierung im Allgemeinen führt hier wohl zu weit.

https://experiments.withgoogle.com/visualizing-high-dimensional-space
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(s. Abschnitt 4.1.4.1). Mangels Kenntnis des Erwartungswerts und der Varianz führt eine

Verwendung der Standardisierung (s. Abschnitt 4.1.4.2) an dieser Stelle zu weit.

Darüber hinaus stellt sich die Frage, wie der 𝑘-nächste-Nachbarn-Algorithmus mit nicht-

metrischen Daten umgeht. In solchen Fällen ist die Euklidische Distanz als Abstandsmaß

ungeeignet. Anhand eines Beispiels (s. Abschnitt 4.3.3) kann den Schülerinnen und Schülern

die Hamming-Distanz (s. Abschnitt 4.1.3.4) vorgestellt werden.

4.2.2.5 Anwendung oder Vertiefung

Nachdem mit der Bestimmung des optimalen Werts für 𝑘 und der Abstandsberechnung die

zentralen Aspekte des 𝑘-nächste-Nachbarn-Algorithmus thematisiert wurden, bietet es sich an,

den Algorithmus in einem neuen Szenario anzuwenden. Eine interessante Möglichkeit dazu

bietet der RAISE-Playground, der auf der Programmierumgebung Scratch aufbaut und mit

der Text Classification eine Erweiterung enthält, die den 𝑘-nächste-Nachbarn-Algorithmus

zur Worterkennung verwendet (s. Abschnitt 4.3.4). Die Funktionsweise des Algorithmus

läuft hier im Rahmen einer Blackbox ab, sodass die einzelnen Schritte nicht im Detail

nachvollzogen werden können (s. Abschnitt 4.3.4.1). Da die Schülerinnen und Schüler jedoch

selbstständig Labels und Trainingsdaten für ihr gewähltes Szenario auswählen müssen, erfahren

sie erneut die Bedeutung der Beschaffenheit der Trainingsdaten für die Zuverlässigkeit der

Klassifizierung. Die Möglichkeit des kreativen Einsatzes des 𝑘-nächste-Nachbarn-Algorithmus

motiviert dabei zusätzlich. Folgende Themengebiete können im Rahmen einer Einzel-, Partner-

oder Gruppenarbeit interessant sein:

• Die Erkennung der Stimmung des Benutzers anhand seiner Antworten.

• Die Bestimmung eines Sachgebiets/Schulfachs, über das der Benutzer spricht.

• Das Erraten von Begriffskategorien zu vom Benutzer genannten Begriffen.

Alternativ kann eine andere Einsatzmöglichkeit des 𝑘-nächste-Nachbarn-Algorithmus themati-

siert werden. Anhand eines konkreten Anwendungsszenarios, in dem nicht die Zuordnung einer

Klasse, sondern die Berechnung einer reellen Zielgröße benötigt wird, kann auf die Regression

mithilfe des Algorithmus eingegangen werden (s. Abschnitt 4.1.7). Ein mögliches Anwendungs-

beispiel hierfür ist der Zusammenhang zwischen der Wohnfläche einer Immobilie (unabhängige
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Variable) und ihrem Preis (abhängige Variable). Bei Bedarf steht im Materialordner eine

entsprechende Excel-Mappe zu dieser Thematik bereit (s. Abschnitt 4.3.5.2).

4.2.2.6 Testen des Modells

Zum Abschluss der Sequenz sollte auf die besondere Bedeutung der Testphase eingegangen

werden (s. Abschnitt 4.1.5.4), was erneut im Szenario der Sprachenerkennung erfolgen kann.

Mithilfe des „Demonstrators für maschinelles Lernen“ klassifiziert jede Schülerin und jeder

Schüler jeweils zehn selbst gewählte Texte und notiert sich, wie viele Klassifizierungen korrekt

sind. Anschließend werden die Ergebnisse zusammengetragen, von der Lehrkraft in eine

Konfusionsmatrix eingetragen und mit den Schülerinnen und Schülern diskutiert. Hierfür

steht im Materialordner die Datei Konfusionsmatrix Deutsch Englisch.xlsx bereit. Damit

hierfür eine Vier-Felder-Tafel ausreicht, bietet es sich an, das Szenario auf zwei verschiedene

Sprachen (z. B. Deutsch und Englisch) zu beschränken. Anhand eines Gütemaßes, beispielsweise

der Genauigkeit, kann nun die Zuverlässigkeit der Klassifizierung berechnet werden.

4.2.2.7 Hinweise zur spätbeginnenden Informatik

Für die Schülerinnen und Schüler der spät beginnenden Informatik ist es nicht erforderlich,

die Schritte des 𝑘-nächste-Nachbarn-Algorithmus allgemein zu formulieren, um eine Idee der

Funktionsweise zu erhalten. Es genügt, den Algorithmus anhand eines Szenarios zu erarbeiten

(s. Abschnitt 4.2.2.2). Ebenso reicht es aus, dass sie das Leave-One-Out-Verfahren exemplarisch

nachvollziehen. Dazu eignet sich der Einsatz des „Demonstrators für maschinelles Lernen“

(s. Abschnitt 4.3.2.2). Zudem kann auf die Behandlung der Normalisierung von Daten und

der Abstandsmaße (s. Abschnitt 4.2.2.4) verzichtet werden.
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4.3 Material

4.3.1 Einführung in den k-nächste-Nachbarn-Algorithmus

4.3.1.1 Intuitive Klassifizierung von Texten

Für den in Abschnitt 4.2.2.1 beschriebenen Einstieg steht im Materialordner das Dokument

Merkmale identifizieren.docx zur Verfügung. Anhand von drei Beispieltexten in den

Sprachen Deutsch, Englisch und Französisch identifizieren die Schülerinnen und Schüler

Merkmale, die dazu geeignet sind, einen Text einer der drei Sprachen zuzuordnen.

4.3.1.2 Die Erarbeitung der Grundidee des k-nächste-Nachbarn-Algorithmus

In Abschnitt 4.2.2.2 wurde vorgeschlagen, von einer zunächst intuitiven Klassifizierung von

Sprachen zu einem algorithmischen Vorgehen überzuleiten. Hierzu stehen im Materialordner

die Text-Datei Klassifizierung von Sprachen.docx und die Tabellenkalkulations-Datei

Abstände sortierbar.xlsx zur Verfügung. Die Schülerinnen und Schüler erkennen, dass

eine intuitive Klassifizierung von Sprachen nicht immer möglich ist. Anhand von Abständen

zwischen Datenpunkten kann die Grundidee des 𝑘-nächste-Nachbarn-Algorithmus erarbeitet

werden.

4.3.2 Demonstrator für maschinelles Lernen

Der „Demonstrator für maschinelles Lernen“ ist ein Programm, mit dessen Hilfe zentrale Aspek-

te des 𝑘-nächste-Nachbarn-Algorithmus sowie des Perzentrons (s. Kapitel 5) veranschaulicht

werden können. Das Programmpaket enthält neben einer jar-Datei4 zum Starten des Pro-

gramms weitere Ordner und Dateien. Folgende sind für den 𝑘-nächste-Nachbarn-Algorithmus

relevant:

• Ordner daten_sprachen_klassifizierung:

Hier werden gelabelte Daten zur Klassifizierung im Rahmen der Sprachenerkennung

abgelegt (siehe Abschnitt 4.3.1.1).

4Zur Verwendung des Programms wird eine möglichst aktuelle Java-Installation (mind. Version 8) benötigt.
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• Ordner daten_sprachen_k_abschaetzung:

Hier werden gelabelte Daten gespeichert, die zur Bestimmung des optimalen Werts

für den Hyperparameter 𝑘 anhand des Leave-One-Out-Verfahrens verwendet werden

(s. Abschnitt 4.3.1.2).

• daten.csv:

Hier können für ein selbstgewähltes Szenario gelabelte Daten gespeichert werden (s. Ab-

schnitt 4.3.2.3).

• Lizenzinformationen.txt:

Diese Datei enthält Quellenangaben zu den Textabschnitten, die für die gelabelten

Daten verwendet wurden.

4.3.2.1 Sprachenerkennung: Klassifizierung

Der „Demonstrator für maschinelles Lernen“ kann verwendet werden, um die Klassifizierung

mithilfe des 𝑘-nächste-Nachbarn-Algorithmus im Anwendungsszenario der Sprachenerken-

nung von Texten zu demonstrieren. Bei Bedarf steht im Materialordner das Einführungs-

video Einführung Sprachenerkennung Klassifizierung.mp4 zur Verfügung, in dem die

Funktionsweise des Programms erklärt wird. Dazu werden im Ordner daten_sprachen_

klassifizierung die Trainingsdaten gespeichert. Hierbei handelt es sich um txt-Dateien, die

Texte in einer der Sprachen enthalten, die zur Klassifizierung herangezogen werden sollen. Der

Dateibezeichner muss dabei das Label und, durch einen Unterstrich getrennt, einen Bezeichner

enthalten, der später zur grafischen Veranschaulichung dient:

Label_Bezeichner.txt, z. B. Deutsch_Internet.txt

Der vorbereitete Datensatz enthält Trainingsdaten zu den Sprachen Deutsch, Englisch und

Französisch; er kann bei Bedarf um weitere Dateien dieser Sprachen bzw. um Dateien anderer

Sprachen ergänzt werden.

Wichtig: Die Klassifizierung mit dem „Demonstrator für maschinelles Lernen“ ist aus

Gründen der grafischen Darstellung auf maximal fünf verschiedene Labels be-

grenzt.
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Nach dem Start des Programms werden die Trainingsdaten anhand der beiden Merkmale

durchschnittliche Wortlänge und relative Vokalhäufigkeit als Datenpunkte in einem zwei-

dimensionalen Koordinatensystem dargestellt und je nach Label farblich hervorgehoben

(s. Abbildung 4.19).

Abb. 4.19: Start des Demonstrators für maschinelles Lernen zur Klassifizierung.

Für die Darstellung werden die Daten normalisiert (siehe Abschnitt 4.1.4.1) und anschließend

so umgerechnet, dass die größte Merkmalsausprägung dem Wert 450, die kleinste dem Wert

50 entspricht. Die Abstände der Datenpunkte können somit in Pixeln gemessen werden.

Im Textfeld Zu klassifizierender Text (s. Abbildung 4.19) kann nun ein Text zur Klassifizierung

eingefügt werden. Damit das Merkmal durchschnittliche Wortlänge stabil berechnet werden

kann, sollten längere Textabschnitte verwendet werden. Am besten eignen sich Passagen aus

Online-Lexika, wie z. B. Wikipedia.
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Wichtig: Bei ungünstigen Eingaben kann es vorkommen, dass der zugehörige Datenpunkt

außerhalb des abgebildeten Ausschnitts des Koordinatensystems liegt.

Der zu klassifizierende Text wird als Datenpunkt im Koordinatensystem veranschaulicht. Nun

können die Schritte des 𝑘-nächste-Nachbarn-Algorithmus schrittweise ausgeführt und nach-

vollzogen werden, wobei der Hyperparameter 𝑘 manuell per Schieberegler (s. Abbildung 4.20,

Pfeil 1) eingestellt wird. Dies wird im Koordinatensystem veranschaulicht (s. Abbildung 4.20,

Pfeil 2). Das Protokollfenster gibt jeweils Auskunft über den zuletzt durchgeführten Arbeits-

schritt (s. Abbildung 4.20, Pfeil 3). Nach dem letzten Schritt kann 𝑘 über den Schieberegler

variiert werden, um den Einfluss des Parameters auf das Klassifizierungsergebnis zu untersu-

chen (s. Abbildung 4.20).

Abb. 4.20: Klassifizierung mithilfe des Demonstrators für maschinelles Lernen.

4.3.2.2 Sprachenerkennung: Abschätzung von 𝑘

Der „Demonstrator für maschinelles Lernen“ kann außerdem zur Bestimmung des optimalen

Werts für den Hyperparameter 𝑘 mithilfe des Leave-One-Out-Verfahrens (s. Abschnitt 4.1.5.3.2)

verwendet werden. Die benötigten gelabelten Daten entsprechen in Aufbau und Bezeichnung

den zur Klassifizierung verwendeten Dateien (s. Abschnitt 4.3.2.1) und werden im Ordner

daten_sprachen_k_abschaetzung gespeichert. Der vorbereitete Datensatz enthält wiederum

Daten zu den Sprachen Deutsch, Englisch und Französisch und kann um weitere Dateien
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ergänzt werden.

Wichtig: Wie bereits in Abschnitt 4.3.1.1 ist der „Demonstrator für maschinelles Lernen“

auch hier auf maximal fünf verschiedene Label begrenzt.

Nach dem Start des Programms werden zunächst alle Trainingsdaten grafisch dargestellt

(s. Abbildung 4.21). Zur Demonstration des Leave-One-Out-Verfahrens stehen die drei Op-

tionen Mikroschritt (Pfeil 1), Einzelschritt (Pfeil 2) und Komplettdurchlauf (Pfeil 3) zur

Verfügung.

Abb. 4.21: Start des Demonstrators für maschinelles Lernen zur Abschätzung von 𝑘.

In der Variante Mikroschritt kann das Verfahren im Detail nachvollzogen werden. Dazu wird

einer der Datenpunkte als Validierungsdatenpunkt gewählt und durch ein Quadrat hervorge-

hoben (s. Abbildung 4.22). Bei jedem Klick auf Schritt des Algorithmus durchführen (Pfeil 1)

wird dieser Datenpunkt für den aktuellen 𝑘-Wert klassifiziert. Ist die Klassifizierung korrekt,

wird die Kreisfläche um den Punkt grün hervorgehoben (Pfeil 2) und im Protokollfenster die
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entsprechende Zahl in der Spalte „erfolgreich“ um 1 erhöht (Pfeil 3). Wird der Validierungsda-

tenpunkt falsch klassifiziert, wird die Kreisfläche rot markiert und der entsprechende Eintrag

in der Tabelle bleibt unverändert. Anschließend wird 𝑘 für den nächsten Mikroschritt um 1

erhöht (Pfeil 4).

Abb. 4.22: Mikroschritt zur Abschätzung von 𝑘.

In der Variante Einzelschritt werden für jeden Validierungsdatenpunkt (s. Abbildung 4.23,

Pfeil 1) die Mikroschritte für die 𝑘-Werte von 1 bis 20 auf einmal durchgeführt und protokolliert

(Pfeil 2).

Abb. 4.23: Einzelschritt zur Abschätzung von 𝑘.
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In der Variante Komplettdurchlauf wird sofort das Endergebnis des Leave-One-Out-Verfahrens

angezeigt. Im Protokollfenster kann der für den verwendeten Datensatz „optimale“ Wert für

𝑘 abgelesen werden (s. Pfeil in Abbildung 4.24).

Abb. 4.24: Komplettdurchlauf zur Abschätzung von 𝑘.

4.3.2.3 Klassifikation und Abschätzung anhand von CSV-Dateien

Neben der Sprachenerkennung von Texten können mit dem „Demonstrator für maschinelles

Lernen“ auch andere Anwendungsbeispiele veranschaulicht werden. Dazu müssen die gelabelten

Daten in die Datei daten.csv eingepflegt werden. Der vorbereitete Datensatz enthält Daten

zur Klassifizierung von Nahrungsmitteln anhand der Merkmale Kalorien und Eiweiß. Es

werden die drei Labels Früchte, Fisch / Fleisch und Backware verwendet. Bei Bedarf kann

die Datei jedoch an ein selbst gewähltes Szenario angepasst werden, indem die verwendeten

Labels und Merkmalsbezeichner ersetzt werden (s. Abbildung 4.25).

Abb. 4.25: Gelabelte Daten in daten.csv.

Wichtig: • Auch hier ist der „Demonstrator für maschinelles Lernen“ auf maximal

fünf verschiedene Label begrenzt.

• Soll die Datei daten.csv auch für das Perzeptron herangezogen werden,

können lediglich zwei verschiedene Klassen verwendet werden.
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Die Handhabung der Klassifizierung sowie der Abschätzung von 𝑘 erfolgen analog zur Text-

klassifizierung (siehe Abschnitte 4.3.1.1 und 4.3.1.2).

4.3.3 Normalisierung und Abstände nicht-metrischer Daten

Für die in Abschnitt 4.2.2.4 vorgeschlagene Vorgehensweise enthält der Materialordner die

Tabellenkalkulations-Datei Normalisierung und Hamming-Distanz.xlsx mit fünf Rechen-

blättern. Die Schülerinnen und Schüler erarbeiten hierbei zunächst die Min-Max-Normalisierung

am Anwendungsszenario der Sprachenerkennung. Anschließend erfolgt die Einführung der

Hamming-Distanz zur Bestimmung der Abstände von nicht-metrischen Daten.

4.3.4 Der k-nächste-Nachbarn-Algorithmus im RAISE-Playground

Der RAISE-Playground des MIT, der auf der Programmierumgebung Scratch basiert, bietet

die Erweiterung Text Classification (s. Abbildung 4.26) an, in welcher der 𝑘-nächste-Nachbarn-

Algorithmus zur Worterkennung eingesetzt werden kann.

Abb. 4.26: Erweiterung Text Classification im MIT-RAISE-Playground.
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Das Tool kann dazu verwendet werden, den 𝑘-nächste-Nachbarn-Algorithmus in einem selbst

gewählten Anwendungsszenario praktisch einzusetzen. Über folgenden Link erhält man Zugriff

auf den RAISE-Playground, der die Text Classification enthält:

https://playground.raise.mit.edu/main/

Bei Bedarf steht im Materialordner das Erklärvideo Einführung RAISE Playground.mp4

bereit, in dem die Funktionsweise erläutert wird. Im Folgenden werden die wesentlichen

Aspekte beschrieben.

4.3.4.1 Funktionsweise und Grenzen

Die Text Classification verwendet multidimensionale Wortvektoren, die aus vielen Merkmalen

bestehen, deren Ausprägung und Bedeutung für den Menschen nicht intuitiv nachvollziehbar

sind (Blackbox). Die Erzeugung der Vektoren erfolgt mithilfe statistischer Methoden bzw.

durch ein künstliches neuronales Netz. Bei der Klassifizierung eines Wortes wird der Abstand

des zugehörigen Datenpunkts zu den Trainingsdatenpunkten gemessen und das Wort mit dem

𝑘-nächste-Nachbarn-Algorithmus einer Klasse zugeordnet. Liegt beispielsweise das Wort King

in der Nachbarschaft des Wortes Queen, so ist der Abstand im Merkmalsraum gering. Die

Wahl des Hyperparameters 𝑘 erfolgt automatisch und kann nicht vom Benutzer beeinflusst

werden.

4.3.4.2 Die Erstellung des Modells

Die Text Classification bezieht sich auf ein Modell, das der Nutzer anlegen muss und das

selbst gewählte Label und zugehörige Trainingsdaten umfasst. Ihre Eingabe erfolgt über die

Schaltfläche Edit Model (s. Abbildung 4.27, Pfeil 1). Ein bereits vorbereitetes Modell in

Form einer json-Datei kann über Load / Save Model hochgeladen werden (s. Abbildung 4.27,

Pfeil 2).

https://playground.raise.mit.edu/main/
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Abb. 4.27: Erstellung des Modells im RAISE-Playground.

4.3.4.3 Die wichtigsten Bausteine der Text Classification

Zur Anwendung des 𝑘-nächste-Nachbarn-Algorithmus können mehrere Bausteine verwendet

werden:

Gibt true zurück, wenn der Algorithmus den

text dem Label color zuordnet; sonst false.

Gibt das Label zurück, das dem text zugeord-

net wird.

Abb. 4.28: Bausteine des MIT-RAISE-

Playgrounds.

Gibt einen Wert zwischen 0 und 1 zurück, der

Auskunft darüber gibt, wie „sicher“ sich der

Algorithmus bei der Klassifizierung von text

ist.

Darüber hinaus stehen weitere Bausteine zur Verfügung, die insbesondere in Kombination

mit anderen Erweiterungen eingesetzt werden können.
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4.3.4.4 Hilfestellung zur Verbesserung der Zuverlässigkeit

Die Zuverlässigkeit der Klassifizierung hängt einerseits vom erstellten Modell, andererseits von

der Implementierung ab. Unabhängig vom gewählten Anwendungsszenario sollten folgende

Aspekte beachtet werden:

• Je mehr Trainingsdatenpunkte verwendet werden, desto zuverlässiger funktioniert die

Klassifikation. Jedem Label sollten mindestens fünf Datenpunkte zugeordnet werden.

• Die Klassifizierungsergebnisse sind zuverlässiger, wenn die Sprache Englisch verwendet

wird.

• Es sollten möglichst trennscharfe Label verwendet werden. Bei den Klassen Stadt und

Land kann es beispielsweise zu Fehlern bei der Zuordnung von Stadtstaaten, wie etwa

Singapur kommen.

• Durch eine geschickte Konstruktion des Algorithmus können ungenaue Klassifizierungen

identifiziert und somit Fehler umgangen werden. Beispielsweise kann der Baustein

Confidence of predict class for im Rahmen von bedingten Anweisungen verwen-

det werden, um bei „unsicheren“ Klassifizierungen weitere Benutzereingaben einzufor-

dern.

Bei Bedarf stehen mit Chatbot Einführung.mp4 und Chatbot Verbesserung.mp4 Erklär-

videos zur Verfügung, in denen die grundlegende Idee zur Erstellung eines Chatbots sowie

Hinweise zur Verbesserung der Zuverlässigkeit erläutert werden.

4.3.5 Der k-nächste-Nachbarn-Algorithmus mit Tabellenkalkulation

Im Ordner „𝑘-nächste-Nachbarn-Algorithmus mit Tabellenkalkulation“ stehen mehrere Da-

teien zur Verfügung, mit denen die Erarbeitung des 𝑘-nächste-Nachbarn-Algorithmus unter

Verwendung einer Tabellenkalkulation möglich ist.
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4.3.5.1 Klassifikation

Mithilfe der Datei Klassifikation T-Shirts können die Schülerinnen und Schüler den

𝑘-nächste-Nachbarn-Algorithmus zur Klassifikation von T-Shirt-Größen anhand der Merk-

male Körpergröße und Brustumfang erarbeiten. In der Datei KNN Klassifizierung mit

Tabellenkalkulation.pdf finden sich die zugehörigen Arbeitsaufträge.

Künstliche Intelligenz 11 k-nächste-Nachbarn-Algorithmus

Der k-nächste-Nachbarn-Algorithmus

Benötigtes Material:

• k_naechster_Nachbar_Klassifikation_Datensatz_T_Shirt und Trainingsdaten_KNN

Anwendung (Klassifikation von Schulshirtgrößen)

Am KI Gymnaisum(KIG) wurden von Herrn Turing Schulshirts für
seine 11. Jahrgangsstufe entworfen. Damit nicht so viele Größen
(S,M,L,XL,XXL,XXXL) produziert werden müssen, hat Herr Turing die
Größen neu eingeteilt und es gibt nur die Größen S, M und L, welche alle
oberen Größen abdecken.

Herr Turing hat aber leider das KIG verlassen und dabei vergessen seine Einteilung in die neuen Größen S,
M und L zu hinterlassen. Lediglich die Daten seiner 11 Jahrgangsstufe sind noch vorhanden. Es wurde
dabei die Körpergröße, der Brustumfang und die daraufhin gekaufte Shirt-Größe notiert.

Arbeitsauftrag 1: Ergänzen der Abstandsberechnung

(a) Öffnen Sie den Ordner KNN_TKS.

(b) Öffnen Sie die Mappe k_naechster_Nachbar_Klassifikation_Datensatz_T_Shirt und navigieren
Sie zur Tabelle Klassifikation.

(c) Die Spalte Abstand ist noch nicht gefüllt. Ergänzen Sie nacheinander passende Formeln zur Berechnung
des Abstands mit der/dem

• Manhatten-Metrik

• Euklidischen Abstand

1
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Der Lernprozess des KNN-Algorithmus

Ein KI-System, welches maschinelles Lernen nutzt, durchläuft einige Phasen bevor es in den produktiven Betrieb
gehen kann. Diese Phasen sind bei den meisten Systemen sehr ähnlich:

Phase 0: Vorbereitung

Vor Beginn des Lernprozesses sind oft einige Vorbereitungen zu treffen bevor mit dem Training begonnen werden
kann. Im Folgenden sind einige Schritte der Vorbereitungsphase aufgelistet:

• Festlegen von Hyperparameter(n)1:
Zu Beginn müssen die Hyperparameter festgelegt werden. Beim KNN-Algorithmus muss hierbei der
Paramter k festgelegt werden, bevor mit dem Training begonnen werden kann. Dies kann allerdings auch
automatisiert erfolgen.

• Vorverarbeitung der Eingabedaten:
Um neue Datenpunkte klassifizieren zu können, müssen die Eingabedaten mit zugehörigen Labeln belegt
werden. Falls die Eingabedaten bereits alle über ein Label verfügen, entfällt dieser Schritt.

• Aufteilung der Daten:
Im Verlauf des maschinellen Lernprozesses werden verschiedene Phasen durchlaufen. Für diese Phasen
werden jeweils Daten benötigt. Deshalb müssen die zur Verfügung stehenden gelabelten Daten für die
verschiedenen Zwecke aufgeteilt werden.

– Trainingsdaten:
Diese Daten werden zum Training des Modells verwendet,
wie etwa zum Erstellen eines Entscheidungsbaums oder
zum Anpassen der Gewichte beim Perzeptron

– Validierungsdaten:
Diese Daten werden zur Abstimmung bzw. Optimierung
der Hyperparameter verwendet

– Testdaten:
Diese Daten werden zur Prüfung der Güte des trainierten
Modells verwendet

• ...
1Dieser Schritt kann auch Phase 1 zugeordnet werden.

2

4.3.5.2 Regression

Die Datei Regression Hauspreise kann verwendet werden, um die in Abschnitt 4.2.2.5

vorgeschlagene Vertiefung des 𝑘-nächste-Nachbarn-Algorithmus zu erarbeiten. Anhand des

Merkmals Fläche in 𝑚2 bestimmen die Schülerinnen und Schüler den Preis einer Immobilie

durch Regression. In der Datei KNN Regression mit Tabellenkalkulation.pdf finden sich

die zugehörigen Arbeitsaufträge.
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Künstliche Intelligenz 11 k-nächste-Nachbarn-Algorithmus

Der k-nächste-Nachbarn-Algorithmus
(Regression)

Benötigtes Material:

• k_naechster_Nachbar_Regression_Hauspreise

Nachdem wir bisher den k -nächste-Nachbarn-Algorithmus zur Klassifikation von Datenpunkten verwendet haben,
beschäftigen wir uns nun mit einem weiteren Anwendungsbereich des Algorithmus, der Regression.

Überblick (Regression mit Hilfe des KNN-Algorithmus)

Eine Regression beschreibt den Zusammenhang zwischen zwei oder mehr Variablen. Dabei unterscheidet
man unabhängige Variablen und abhängige Variablen (Zielgrößen). Mit der Regression können auf Basis
der unabhängigen Variablen Prognosen über die abhängigen Variablen aufgestellt werden.

Vereinfachend betrachten wir im Folgenden nur den Fall einer einzelnen Zielgröße.

Vorgehen:

Wir wollen eine Prognose über die Zielgröße eines neuen Datenpunkts aufstellen von dem wir nur die Werte
der unabhängigen Variablen kennen.

(a) Bilden des Mittelwerts der Zielgrößenwerte der k nächsten Nachbarn des neuen Datenpunkts

(b) Die Zielgröße des neuen Datenpunkts erhält als Wert den berechneten Mittelwert

1
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Beispiel (Regression mit Hilfe des KNN-Algorithmus)

Beispiel:

Gegeben ist eine Menge an Trainingsdatenpunkten (blau). Die
unabhängige Variable ist dabei die x -Koordinate, die abhängige
Variable, d.h. die Zielgröße, die y-Koordinate.
Für den neuen Datenpunkt P soll nun für dessen x -Koordinate
x = 3 die zugehörige y-Koordinate prognostiziert werden.

• k = 1 :

Für k = 1 wird der bezüglich x (unabhängige Variable)
nächste Nachbar (orange) gesucht. Dabei handelt es sich
um C (2 | 2).
Der Mittelwert der y-Koordinate (Zielgröße / abhängige
Variable) der k nächsten Nachbarn ist hier, da es nur ein
Datenpunkt ist, direkt die y-Koordinate des Punkts C .
Die prognostizierte y-Koordinate des neuen Datenpunkts
P ist somit y = 2.

• k = 3 :

Für k = 3 sind die bezüglich x nächsten Nachbarn (orange)
die Punkte B , C und D .
Der Mittelwert der y-Koordinaten der k nächsten Nachbarn
berechnet sich folgendermaßen:

1
3 · (0.5 + 2 + 6.5) = 1

3 · 9 = 3

Die prognostizierte y-Koordinate des neuen Datenpunkts
P ist der berechnete Mittelwert, also y = 3.

Anwendung (Vorhersage von Hauspreisen)

Als mögliche Anwendung wurde eine Excel-Mappe zur Vorhersage von potentiellen Hauspreisen ent-
wickelt, welche Regression unter Verwendung des KNN-Algorithmus nutzt um zu einer gewünschten
Hausfläche(unabhängige Variable) den potentiellen Preis der Immobilie(Zielgröße/abhängige Variable) zu
prognostizieren. Datengrundlage hierfür ist ein Auszug aus dem Datensatz der Sacramento Bee, welche
Daten über Hauskäufe in Sacramento gesammelt und öffentlich zur Verfügung gestellt hat. Die Excel-Mappe
nutzt nur einen Teildatensatz und verwendet nur die Merkmale Hausfläche und Hauspreis.

2

4.3.6 Die Testphase

Für die in Abschnitt 4.2.2.6 vorgeschlagene Vorgehensweise steht im Materialordner die

Tabellenkalkulations-Datei Konfusionsmatrix Deutsch Englisch.xlsx zur Verfügung. Die

Testergebnisse der Schülerinnen und Schüler können in die dafür vorgesehenen Felder ein-

getragen werden. Die automatisch berechnete Genauigkeit ermöglicht eine Beurteilung der

Zuverlässigkeit der Klassifizierung. Bei Bedarf können weitere Gütemaße berechnet werden.

4.3.7 Aufgabenbeispiel für einen Leistungsnachweis

4.3.7.1 Vorbemerkung

Im folgenden Vorschlag für einen Leistungsnachweis wird der „Demonstrator für maschinel-

les Lernen“ verwendet. Die zip-Datei Demonstrator Leistungsnachweis enthält das Tool

zusammen mit der Datei daten.csv, die die Trainingsdaten enthält.
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4.3.7.2 Leistungsnachweis

Ein Online-Shop für Bekleidung erhält immer wieder Rücksendungen von Kundinnen und

Kunden, weil sie Kleidungsstücke in der falschen Größe bestellt haben. Um die Kundschaft

zukünftig bei ihrer Wahl der Größe zu unterstützen, soll mithilfe Künstlicher Intelligenz

eine Kleidergröße vorgeschlagen werden. In einem Pilotprojekt wird das System für T-Shirts

für Männer erprobt, wobei zunächst nur die Größen (Label) S, M und L mit einbezogen

werden. Dazu müssen die Kunden zunächst Körpergröße und Brustumfang (jeweils in cm) in

eine Eingabemaske eingeben. Anschließend ordnet das System anhand von Erfahrungswerten

zufriedener Kunden den eingegebenen Maßen eine der drei Größen zu. Dazu wird der 𝑘-

nächste-Nachbarn-Algorithmus verwendet.

1. Öffnen Sie den Bereich CSV-Daten: Klassifikation des Demonstrators für maschinel-

les Lernen. Beurteilen Sie, inwieweit die vorliegenden Trainingsdaten für eine Klassifizie-

rung mit dem 𝑘-nächste-Nachbarn-Algorithmus geeignet sind.

Lösungsvorschlag:

• Die Trainingsdaten für die Größe 𝑆 bilden eine erkennbare und von den Daten-

punkten anderer Größen abgegrenzte Nachbarschaft (positiv).

• Die Trainingsdatenpunkte der Größen 𝑀 und 𝐿 sind teilweise vermischt bzw. haben

Ausreißer (negativ).

• Die Größe hat lediglich halb so viele Trainingsdatenpunkte wie die anderen beiden

Größen (negativ).

2. Ein Kunde hat eine Körpergröße von 185 cm und einen Brustumfang von 105 cm. Be-

stimmen Sie das Klassifikationsergebnis für den Datenpunkt mithilfe des Demonstrators

für maschinelles Lernen für 𝑘 = 4 und 𝑘 = 5 und bewerten Sie die Aussagekraft des

Ergebnisses für den Kunden.

Lösungsvorschlag:

• 𝑘 = 4: Jeweils zwei der vier nächsten Nachbarn haben die Label 𝑀 bzw. 𝐿. Aufgrund

des Gleichstands ist keine Klassifikation möglich.
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• 𝑘 = 5: Zwei der fünf nächsten Nachbarn haben das Label 𝐿, drei haben das Label

𝑀. Dem Kunden wird somit das Label 𝑀 vorgeschlagen. Aufgrund der „knappen“

Entscheidung ist die Vorhersage jedoch mit Unsicherheit verbunden.

3. Begründen Sie, dass die gelabelten Daten vor der Verwendung des 𝑘-nächste-Nachbarn-

Algorithmus grundsätzlich normalisiert werden sollten.

Lösungsvorschlag:

Sollten Merkmale unterschiedlich skaliert sein, kann es vorkommen, dass sie einen

unterschiedlich großen Einfluss auf die Berechnung der Abstände zwischen Datenpunk-

ten haben, was die Klassifizierung beeinträchtigen kann. Darüber hinaus müssen ggf.

Merkmalsausprägungen unterschiedlicher Maßeinheiten addiert werden. Durch eine

Normalisierung werden alle Merkmalsausprägungen auf das Intervall [0; 1] abgebildet.

Unterschiedliche Skalierungen der Merkmale nehmen somit keinen Einfluss mehr. Ebenso

spielen Einheiten keine Rolle mehr, da es sich bei der normalisierten Größe um ein

relatives Maß handelt.

4. Erläutern Sie das Leave-One-Out-Verfahren anhand eines selbstgewählten Datenpunktes

und bestimmen Sie mithilfe des Demonstrators für maschinelles Lernen den optimalen

Wert für 𝑘.

Lösungsvorschlag:

Für jeden Trainingsdatenpunkt wird überprüft, für welche Werte von 𝑘 er korrekt

klassifiziert wird. Beispielsweise gilt für Datenpunkt 6:

• Für 𝑘 = 1 korrekt klassifiziert.

• Für 𝑘 = 2 falsch klassifiziert.

• Für 𝑘 = 3 korrekt klassifiziert.

• ...
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5.1 Fachliche Grundlagen

5.1.1 Überblick

Künstliche neuronale Netze sind ein wichtiger Teilbereich der Künstlichen Intelligenz. Sie

kommen in sehr vielen Anwendungen zum Einsatz, die zunehmend Einfluss auf unser Leben

ausüben.

In vielen Ländern hat sich der Einsatz von Software zur Gesichtserkennung bei der Straf-

verfolgung etabliert. Softwareunternehmen wie beispielsweise Clearview durchforsten dabei

soziale Netzwerke und Webseiten, um umfangreiche künstliche neuronale Netze mit meh-

reren Milliarden Gesichtern zu trainieren. Allerdings häufen sich in der letzten Zeit die

Negativschlagzeilen aufgrund von Missbrauch der Technik und datenschutzrechtlicher Verstö-

ße (Beispiel: www.heise.de/news/Aus-Musical-geworfen-Gesichtserkennung-entdeckt-

Anwaeltin-gegnerischer-Kanzlei-7444612.html).

Auch bei der Generierung von Bildern (Bild-

synthese) spielen künstliche neuronale Netze

eine immer wichtigere Rolle. Die Internetsei-

te https://thisxdoesnotexist.com/ bietet

einen Dienst zur Erzeugung von Gesichtern

und anderen Objekten, die nicht wirklich exis-

tieren. Dall-E und Stable Diffusion erlauben

dies sogar anhand einer Textbeschreibung (sie-

he Abbildung 5.1).

Digitale Sprachassistenzsysteme wie Alexa, Siri

oder Google Assistant findet man heutzutage

in vielen Haushalten. Damit ein Programm An-

weisungen von Menschen, wie beispielsweise

„Mach die Stehlampe an“, immer besser verste-

hen kann, werden künstliche neuronale Netze

eingesetzt.

Abb. 5.1: Die Software Dall-E generierte

dieses Bild mithilfe eines künstlichen neu-

ronalen Netzes anhand der Beschreibung

„A smiling robot programs a computer“.

Fast alle Verfahren (unter anderem auch der Entscheidungsbaum- und der 𝑘-nächste-Nachbarn-

Algorithmus) der künstlichen Intelligenz haben das Ziel, kognitive Prozesse nachzubilden.

www.heise.de/news/Aus-Musical-geworfen-Gesichtserkennung-entdeckt-Anwaeltin-gegnerischer-Kanzlei-7444612.html
www.heise.de/news/Aus-Musical-geworfen-Gesichtserkennung-entdeckt-Anwaeltin-gegnerischer-Kanzlei-7444612.html
https://thisxdoesnotexist.com/
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Generell setzen sie auf Mathematik, Programmiersprachen und Elektronik. Die künstlichen

neuronalen Netze verfolgen dagegen einen bionischen Ansatz, das heißt, sie versuchen, das

Gehirn selbst nachzuahmen (vgl. Ertel, 2021).

Der erste Abschnitt 5.1.2 beschäftigt sich mit den zugrunde liegenden Prozessen im Gehirn

und der Interaktion von Nervenzellen. Danach wird in Abschnitt 5.1.3 gezeigt, wie eine

einzelne Nervenzelle als künstliches Neuron (einfaches Perzeptron) modelliert wird und wie

man damit eine Klassifizierung durchführen kann. Im Abschnitt 5.1.4 wird präsentiert, wie ein

solches Perzeptron für zwei Eingaben mithilfe eines maschinellen Lernverfahrens trainiert wird.

Im nächsten Abschnitt 5.1.5 wird gezeigt, wie dieses Verfahren auf Eingaben mit beliebig

vielen Merkmalen angewendet werden kann. Ein Vorschlag zur Implementierung wird in Ab-

schnitt 5.1.6 vorgestellt. Im letzten Abschnitt werden die Grenzen des einfachen Perzeptrons

aufgezeigt und in einem Ausblick dargestellt, wie man diese Grenzen durch Bildung eines

künstlichen neuronalen Netzes, das heißt einer Netzwerkstruktur aus einfachen Perzeptronen,

verschiebt.

5.1.2 Die Natur als Vorbild

Sämtliche unserer bewussten und unterbewussten Entscheidungen werden vom Gehirn getroffen.

Da ist es naheliegend, dass man sich zur Simulation von intelligentem Verhalten die Natur zum

Vorbild nimmt. Wissenschaftler haben bereits im 19. Jahrhundert die Nervenzellen entdeckt

und erforscht. Schon damals war bekannt, dass diese in Gehirnen hochgradig miteinander

vernetzt sind. Mittlerweile weiß man, dass dieses Netzwerk beim Menschen aus knapp 100

Milliarden Nervenzellen, die auch als Neuronen bezeichnet werden, bestehen; jedes einzelne

Neuron kann wiederum mehrere tausend Verknüpfungen besitzen.

Der Aufbau eines Neurons ist in Abbildung 5.2 dargestellt. An den Dendriten verbinden

sich andere Nervenzellen, die elektrische Signale an das Neuron übertragen können. Die

Verbindungen können dabei unterschiedlich effizient sein und somit einen mehr oder weniger

starken Reiz auslösen. Wenn mehrere angeschlossene Nervenzellen gleichzeitig Signale über

die Dendriten auf den Zellkörper übertragen, werden die Signale addiert und der Reiz damit

verstärkt. Übersteigt dieser eine gewisse Schwelle, so transportiert das Neuron ein elektrisches

Signal durch das Axon an andere damit verbundene Nervenzellen weiter. Man sagt auch, das

Neuron „feuert“.
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Abb. 5.2: Aufbau eines Nervenzelle.

Die Verbindungsstellen am Ende des Axons werden als Synapsen bezeichnet; sie haften an

den Dendriten anderer Nervenzellen.

Obwohl die Funktionsweise einer einzelnen Nervenzelle gut verstanden wird, bleibt die Arbeits-

weise des gesamten menschlichen Gehirns weitgehend ein Rätsel. Einige Gründe dafür sind die

enorme Komplexität des Netzwerks, das ständigen Veränderungen unterliegt, beispielsweise

durch Lernprozesse. Hinzu kommen offensichtliche Grenzen bei der Untersuchung des lebenden

Gehirns.

5.1.3 Informatische Modellierung eines Neurons

Der im letzten Abschnitt dargestellte Grundaufbau einer Nervenzelle wird nun mit den Mitteln

der Informatik als einfaches Perzeptron nachgebildet (Abbildung 5.3):

𝑥𝑛

𝑥1

𝑥2
...

𝜃

𝑤1

𝑤2

𝑤𝑛

Ausgabe

Abb. 5.3: Modell eines künstlichen Neurons.

Das künstliche Neuron hat dabei folgende Bestandteile:
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• Bei 𝑥1 bis 𝑥𝑛 handelt es sich um die Eingabewerte. Dies entspricht der Signalübertra-

gung an den Dendriten einer Nervenzelle.

• Die Parameter 𝑤1 bis 𝑤𝑛 stellen sogenannte Gewichte dar. Sie drücken aus, wie stark

der Einfluss der jeweils zugehörigen Eingabe auf die Entscheidung über ein Feuern

des Neurons ist. Mathematisch wird dies so umgesetzt, dass alle Eingaben 𝑥𝑖 jeweils

mit ihren Gewichten 𝑤𝑖 multipliziert werden. Damit wird die unterschiedlich starke

Übertragung von elektrischen Reizen bei einer Nervenzellenverbindung an den Synapsen

nachgeahmt.

• Der Parameter 𝜃 wird als Schwellenwert bezeichnet. Wenn die Summe der gewichteten

Eingangssignale den Schwellenwert erreicht oder überschreitet, so bewirkt dies ein Feuern

des Neurons, wenn folgende Ungleichung erfüllt ist:

𝑤1 · 𝑥1 + 𝑤2 · 𝑥2 + . . . + 𝑤𝑛 · 𝑥𝑛 ≥ 𝜃 .

• Eine gängige Möglichkeit ist, dass man als Ausgabe den Wert 1 festlegt, wenn das

Neuron feuert, und den Wert 0, wenn das Neuron nicht feuert.

Im Folgenden ist ein Beispiel für ein Perzeptron mit Gewichten und Schwellenwert abgebildet:

𝑥2

𝑥1

1,5

1

0,5

Ausgabe

Abb. 5.4: Beispiel für ein einfaches Perzeptron mit zwei Eingaben.

Die blau dargestellten Werte für Gewichte und Schwellenwert sind individuell für das jeweilige

Perzeptron und können mit einem maschinellen Lernverfahren, das im Abschnitt 5.1.4.2

thematisiert wird, automatisiert ermittelt werden, falls dies möglich ist.
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5.1.4 Das Perzeptron im zweidimensionalen Raum

5.1.4.1 Klassifizierung

Die Bedingung für ein Feuern für das oben abgebildete Perzeptron

1 · 𝑥1 + 0,5 · 𝑥2 ≥ 1,5

lässt sich umformen zu 𝑥2 ≥ −2𝑥1 + 3. Der „Gleichheitsfall“ 𝑥2 = −2𝑥1 + 3 entspricht der

Gleichung einer Geraden, die den zweidimensionalen Raum linear in zwei Halbräume separiert

(siehe Abbildung 5.5).

𝑥1

𝑥2

1 2 3

1

2

3

Abb. 5.5: Lineare Separierung des Raums. Im grünen Bereich feuert das künstliche Neuron, im roten

Bereich nicht.

Liegt für dieses Beispiel eine Eingabe (𝑥1 | 𝑥2) auf bzw. oberhalb der Geraden, das heißt im

grün markierten Bereich, feuert das Perzeptron, liegt sie unterhalb, also im rot markierten

Bereich, feuert das Neuron nicht.

Das heißt, das Perzeptron klassifiziert eine Eingabe dadurch, dass es sie grün (entspricht

einem Feuern) bzw. rot labelt, je nachdem, in welchem Halbraum die Eingabe liegt.

Beispiel: Es soll für die beiden Eingaben 𝐴(0,5 | 1) und 𝐵(3 | 3) berechnet werden, ob das

Perzeptron aus Abbildung 5.5 feuert:

1 · 0,5 + 0,5 · 1 ≥ 1,5 ⇐⇒ 1 ≥ 1,5
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Die Aussage ist falsch, deshalb feuert das Perzeptron nicht und labelt den Eingabepunkt 𝐴

mit 0 (rot).

1 · 3 + 0,5 · 3 ≥ 1,5 ⇐⇒ 4,5 ≥ 1,5

Die Aussage ist wahr, deshalb feuert das Perzeptron und labelt den Eingabepunkt 𝐵 mit 1

(grün).

Auch ein Blick auf folgende Abbildung bestätigt, dass sich der Eingabepunkt 𝐴 im roten und

Eingabepunkt 𝐵 im grünen Halbraum befindet.

𝑥1

𝑥2

1 2 3

1

2

3

𝐴

𝐵

Abb. 5.6: Datenpunkt 𝐴 wird mit 0 (rot) und Datenpunkt 𝐵 mit 1 (grün) gelabelt.

5.1.4.2 Trainingsdaten und Delta-Lernregel

Damit das Perzeptron zuverlässig klassifizieren kann, muss es vorab trainiert werden. Dazu

werden gelabelte Daten als Trainingsdaten benötigt. Zunächst werden die Gewichte und der

Schwellenwert durch zufällige Werte vorbelegt. Das Perzeptron berechnet dann für einen

Trainingsdatenpunkt die Ausgabe (Label) und vergleicht diese mit dem tatsächlichen Label.

Folgende Abbildung (5.7) zeigt vier Trainingsdatenpunkte, von denen gemäß der aktuellen

Konfiguration des Perzeptrons zwei richtig und zwei falsch klassifiziert werden würden.
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Daten-

punkt
𝑥1 𝑥2 Label

𝐴 0,5 1 0 (rot)

𝐵 3 3 1 (grün)

𝐶 0,25 2 1 (grün)

𝐷 1,5 1 0 (rot)

𝑥2

𝑥1

1,5

1

0,5

Ausgabe

𝑥1

𝑥2

1 2 3

1

2

3

𝐴

𝐵

𝐶

𝐷

Abb. 5.7: Das künstliche Neuron klassifiziert zwei der vier Trainingsdaten falsch.

Weichen die Label voneinander ab, müssen Gewichte und Schwellenwert und damit die Lage

der Geraden angepasst werden. Nachdem die Ausgabe des Perzeptrons (berechnetes Label) mit

dem tatsächlichen (erwarteten) Label verglichen wurde, gibt es drei Fälle zu unterscheiden:

Fall 1: Berechnetes Label stimmt mit dem erwarteten Label überein

Das Perzeptron hat die Klassifizierung für diesen Datenpunkt richtig durchgeführt. Eine

Anpassung der Gewichte und des Schwellenwerts ist somit nicht erforderlich. In Abbildung 5.7

trifft das auf die Datenpunkte 𝐴 und 𝐵 zu.

Fall 2: Berechnetes Label ist kleiner als das erwartete Label

Dieser Fall tritt im Beispiel bei Datenpunkt 𝐶 auf, da das erwartete Label den Wert 1 besitzt,

aber das Perzeptron als Ausgabe den Wert 0 liefert, denn die gewichtete Summe 1 ·0,25+0,5 ·2

ist kleiner als der Schwellenwert 1,5. Um die Trennlinie der beiden Halbräume in Richtung des

Datenpunktes 𝐶 zu bewegen, werden die Gewichte 𝑤1 und 𝑤2 erhöht und der Schwellenwert

𝜃 verringert.

Fall 3: Berechnetes Label ist größer als das erwartete Label

In Abbildung 5.7 tritt dieser Fall bei Datenpunkt 𝐷 auf, da die gewichtete Summe 1 ·1,5+0,5 ·1

größer als der Schwellenwert 1,5 ist und somit das Perzeptron eine 1 ausgibt, obwohl der
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Datenpunkt mit 0 gelabelt ist. Die Situation ist nun umgekehrt zu Fall 2, dementsprechend

werden die Gewichte 𝑤1 und 𝑤2 verringert, dagegen der Schwellenwert 𝜃 erhöht.

Mithilfe dieser Fälle kann die Delta-Lernregel, ein Verfahren zur Anpassung der Gewichte

und des Schwellenwerts, hergeleitet werden. Hierzu wird festgelegt, dass der Fehler der

Klassifikation, dargestellt durch den Buchstaben Delta 𝛿, durch

𝛿 = Labelerwartet − Labelberechnet

berechnet wird. Im Fall 1 hat 𝛿 den Wert 0, im Fall 2 ist 𝛿 = 1 und im dritten Fall 𝛿 = −1.

Nun erfolgen die Anpassungen der Gewichte beziehungsweise des Schwellenwerts anhand

folgender Formeln:

𝑤′
1 = 𝑤1 + 𝛼 · 𝛿 · 𝑥1

𝑤′
2 = 𝑤2 + 𝛼 · 𝛿 · 𝑥2 (5.1)

𝜃′ = 𝜃 − 𝛼 · 𝛿

Die Formeln stellen sicher, dass sich die separierende Gerade auf „schnellstem“ Weg in die

richtige Richtung bewegt.

An dieser Stelle tritt der Hyperparameter 𝛼 ∈ R+ auf, der als Lernrate bezeichnet wird. Diese

beschreibt, wie stark die Anpassung in Richtung des Datenpunkts erfolgen soll.

Abbildung 5.8 veranschaulicht den Einfluss der Lernrate auf die Anpassung der beiden

Gewichte und des Schwellenwerts. Hierbei wurde ein Lernschritt der Delta-Lernregel mit

Datenpunkt 𝐶 (0,25 | 2) für drei verschiedene Werte von 𝛼 durchgeführt.

Man erkennt, dass ein großer Wert von 𝛼 dazu führt, dass eine zu starke Anpassung in

Richtung des Trainingspunkts stattfindet. Damit kann man gegebenenfalls bei der Anpassung

der Gewichte und des Schwellenwerts über das Ziel hinausschießen. Wählt man die Lernrate

zu klein, so wird die Trennlinie zwar in die richtige Richtung bewegt, aber es sind sehr

viele Schritte nötig, bis eine passende Positionierung gefunden wird. Im obigen Beispiel

scheint eine Lernrate von 0,1 gut geeignet zu sein, allerdings lässt sich das nicht pauschal auf

andere Szenarien übertragen. In der Praxis hat es sich als vorteilhaft erwiesen, mit großen

Lernraten zu starten und den Wert sukzessive zu verkleinern. Es gibt noch eine Reihe weiterer

Möglichkeiten der Optimierung, eine genauere Betrachtung würde aber den Rahmen der

Handreichung sprengen.
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𝛼 = 1

𝛼 = 0,1

𝛼 = 0,01

Beispiel: Berechnungen für Lernrate 𝛼 = 0,1

Perzeptron vor dem Trainingsschritt: 𝑤1 = 1;𝑤2 = 0,5; 𝜃 = 1,5

Trainingsdatenpunkt 𝐶: 𝑥1 = 0,25; 𝑥2 = 2; Labelerwartet = 1; Labelberechnet = 0

𝛿 = Labelerwartet − Labelberechnet = 1 − 0 = 1

𝑤′
1 = 𝑤1 + 𝛼 · 𝛿 · 𝑥1 = 1 + 0,1 · 1 · 0,25 = 1,025

𝑤′
2 = 𝑤2 + 𝛼 · 𝛿 · 𝑥2 = 0,5 + 0,1 · 1 · 2 = 0,7

𝜃′ = 𝜃 − 𝛼 · 𝛿 = 1,5 − 0,1 · 1 = 1,4

Abb. 5.8: Einfluss der Lernrate auf die Anpassung der Gewichte und des Schwellenwerts nach einem

Schritt der Delta-Lernregel.
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5.1.4.3 Algorithmus zur Delta-Lernregel

Die bereits formulierte Delta-Lernregel wird folgendermaßen auf die Menge der Trainingsdaten

angewendet:

Belege Gewichte und Schwellenwert mit zufälligen Werten vor

Wiederhole bis eine Abbruchbedingung erfüllt ist

Wiederhole für alle Trainingsdatenpunkte

Bestimme mit dem Perzeptron Labelberechnet des aktuellen Datenpunkts

Berechne 𝛿 = Labelerwartet − Labelberechnet

Passe die Gewichte und den Schwellenwert gemäß den Formeln 5.1 an.

Ende Wiederhole

Ende Wiederhole

Ein Abbruchkriterium des Algorithmus ist, dass in einem kompletten Durchlauf alle Trainings-

daten bereits richtig klassifiziert sind und dadurch keine Anpassung der Gewichte und des

Schwellenwerts mehr vorgenommen werden musste. Mit diesem Abbruchkriterium liefert der

Algorithmus genau dann (Rosenblatt, 1960) ein sinnvolles Ergebnis, wenn die Trainingsdaten

linear separierbar sind.

Falls die Trainingsdaten nicht linear separierbar sind (s. Abbildung 5.9), würde der Algorithmus

nach obiger Abbruchbedingung nicht terminieren. Daher kann als weitere Abbruchbedingung

beispielsweise auch eine maximale Zahl an Iterationen festgelegt werden. Je nach Trainingsda-

ten kann dennoch eine zufriedenstellende Lösung erreicht werden (s. Abbildung 5.9, links),

allerdings gibt es auch Fälle (s. Abbildung 5.9, mittig und rechts), in denen ein Perzeptron

keine brauchbare Separierung ermitteln kann.
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𝑥1

𝑥2
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Abb. 5.9: Drei Beispiele für Daten, die nicht linear separierbar sind.

5.1.5 Das Perzeptron im n-dimensionalem Raum

Die Ungleichung 𝑤1 · 𝑥1 + 𝑤2 · 𝑥2 + . . . + 𝑤𝑛 · 𝑥𝑛 ≥ 𝜃 lässt sich umformen zu

©­­­­­­­«

𝑥1

𝑥2
...

𝑥𝑛

ª®®®®®®®¬︸ ︷︷ ︸
=:−→𝑥

◦

©­­­­­­­«

𝑤1

𝑤2
...

𝑤𝑛

ª®®®®®®®¬︸  ︷︷  ︸
=:−→𝑤

− 𝜃 ≥ 0 .

Das Perzeptron würde feuern, wenn der Eingabevektor −→𝑥 im entsprechenden Halbraum liegt,

in den der Vektor −→𝑤 zeigt.

Im Folgenden soll nun ein Perzeptron als Funktion 𝑓 : R𝑛 → {0; 1} mit −→𝑥 ∈ R𝑛 als Eingabe

modelliert werden. Man zerlegt die Berechnung der Ausgabe in zwei Teilschritte:

𝑥𝑛

𝑥1

𝑥2
...

Σ

𝜃

𝑤1

𝑤2

𝑤𝑛

0 / 1

Abb. 5.10: Das Perzeptron verarbeitet die Eingaben in zwei Schritten: Gewichtete Summe bilden

(links) und Aktivierung berechnen (rechts).
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Der erste Schritt (Abbildung 5.10, blaue Einfärbung links) ist die Berechnung der Differenz

aus der gewichteten Summe anhand der Eingaben und des Schwellenwerts. Diese Berechnung

erfolgt mithilfe der Übertragungsfunktion:

𝑓Übertragung(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑤1 · 𝑥1 + 𝑤2 · 𝑥2 + . . . + 𝑤𝑛 · 𝑥𝑛 − 𝜃

Je nachdem, ob mit der gewichteten Summe der Schwellenwert unterschritten wurde, ist der

Wert der Übertragungsfunktion kleiner als 0, anderenfalls größer gleich 0. Da das Perzeptron

nur den Wert 0 oder 1 ausgeben soll, wird in einem zweiten Schritt (Abbildung 5.10, gelbe

Einfärbung, rechts) die Ausgabe 𝑎 der Übertragungsfunktion mit einer weiteren Funktion

verarbeitet:

𝑓Heaviside(𝑎) =


1 falls 𝑎 ≥ 0

0 falls 𝑎 < 0

Diese Funktion wird als Heaviside-Funktion bezeichnet. Sie ist eine Aktivierungsfunktion,

denn sie entscheidet anhand der gewichteten Summe und des Schwellenwerts, ob das künstliche

Neuron „aktiviert“ wird, also feuert.

Die Funktion 𝑓 : R𝑛 → {0; 1} des Perzeptrons lässt sich damit als Verkettung der beiden

Funktionen 𝑓Übertragung und 𝑓Heaviside schreiben:

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓Heaviside
(
𝑓Übertragung (𝑥1, 𝑥2, . . . , 𝑥𝑛)

)

Exkurs (Weitere Aktivierungsfunktionen)

Der Wertebereich der Heaviside-Funktion ist binär und somit diskret. Das mag zwar

den natürlichen Prozessen der Nervenzelle recht nahekommen, besitzt aber Nachteile

gegenüber einer reellwertigen Ausgabe:

• Die Bestimmung der Gewichte und des Schwellenwerts wird bei künstlichen neu-

ronalen Netzen, deren Grundbaustein das einfache Perzeptron ist, mithilfe eines

Optimierungsalgorithmus gelöst; dieser Algorithmus basiert meist auf einem Gra-

dientenabstieg1. Solche Verfahren benötigen als Aktivierungsfunktion eine stetig

differenzierbare Funktion, um effizient arbeiten zu können.

1Der Backpropagation-Algorithmus ist ein solches Verfahren. Er ist im Lehrplan der 13. Jahrgangsstufe

verankert.
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• Künstliche neuronale Netze eignen sich grundsätzlich auch zur Berechnung einer

Regression. Durch eine Beschränkung auf die Werte 0 und 1 in der Ausgabe ist

das nicht möglich, da in der Regel Funktionen approximiert werden, die in einen

kontinuierlichen Werteraum abbilden.

• Das Ergebnis der Klassifizierung eines Datenpunkts, der sich recht nahe oder sogar

auf der Trennlinie beziehungsweise Trennebene befindet, ist mit deutlich höherer

Unsicherheit behaftet als ein weiter entfernter. Eine Ausgabe nahe 0,5 würde bspw.

signalisieren, dass das Perzeptron keine sichere Aussage treffen kann.

Aus diesen und weiteren Gründen werden in der Praxis vorzugsweise kontinuierliche

Aktivierungsfunktionen verwendet. Etabliert hat sich in den letzten Jahrzehnten die

Sigmoid-Funktion

𝑓 sig(𝑥) =
1

1 + 𝑒−𝑥
,

die entsprechend Abbildung 5.11 (b) auf den Wertebereich zwischen 0 und 1 abbildet,

streng monoton steigend und stetig differenzierbar ist. Alternativ werden auch andere

Funktionen, oftmals mit linearem Charakter (Abbildung 5.11 (c) und (d)) herangezogen.

Sie weisen zwar ein mathematisch weniger günstiges Verhalten auf, lassen sich aber am

Computer effizient berechnen, wodurch dieser Nachteil ausgeglichen wird.
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(d) ReLU-Funktion

Abb. 5.11: Überblick über verschiedene Aktivierungsfunktionen.
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5.1.6 Implementierung in Java

Es folgt ein Vorschlag für eine Implementierung

eines Perzeptrons in der Programmiersprache

Java. Die zugrunde liegende Modellierung wur-

de in der Klassenkarte rechts dargestellt. Wie

man sieht, beschränkt sich das Beispiel auf zwei

Eingaben. Möchte man das Programm auf den

𝑛−dimensionalen Raum verallgemeinern, so muss

man lediglich die Gewichte und die Eingaben

durch ein Feld ersetzen. Als Aktivierungsfunkti-

on wird die Heaviside-Funktion verwendet, die in

der Methode berechneAktivierung implemen-

tiert ist.

PERZEPTRON

− w1

− w2

− theta

− lernrate

+ Perzeptron(neueLernrate)

+ berechneLabel(x1,x2)

+ lerne(x1,x2,erwartetesLabel)

− berechneUebertragung(x1,x2)

− berechneAktivierung(a)

public class Perzeptron {

private double w1;

private double w2;

private double theta;

private double lernrate;

public Perzeptron(double neueLernrate) {

lernrate = neueLernrate;

}

public void lerne(double x1, double x2, double erwartetesLabel) {

double delta = erwartetesLabel - berechneLabel(x1,x2);

w1 = w1 + lernrate * delta * x1 ;

w2 = w2 + lernrate * delta * x2 ;

theta = theta - lernrate * delta;

}

public double berechneLabel(double x1, double x2) {

return berechneAktivierung(berechneUebertragung(x1,x2));

}
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private double berechneUebertragung(double x1, double x2) {

return w1 * x1 + w2 * x2 - theta;

}

private double berechneAktivierung(double a) {

if(a >= 0) {

return 1.0;

}

else {

return 0.0;

}

}

}

Die programmierte Klasse beschränkt sich lediglich auf das Perzeptron. Zum Training des

Perzeptrons mit mehreren Datenpunkten wird mindestens eine weitere Klasse benötigt. Deren

Implementierung weist der Lehrplan nicht explizit aus, kann aber zum Testen angegeben

werden (siehe Abschnitt 5.3.3).

5.1.7 Vom Perzeptron zum künstlichen neuronalen Netz

5.1.7.1 Erkennung von mehr als zwei Klassen

Wenn das einfache Perzeptron zur Klassifizierung verwendet wird, wird jeder Datenpunkt mit

0 oder 1 gelabelt. Das heißt, mit einem Perzeptron lässt sich lediglich ein Zweiklassenproblem

lösen. Ein einfaches Perzeptron ist also ein „binärer“ Klassifikator. Tabelle 5.1 zeigt, wie

bisherige Szenarien der Handreichung auf das Klassifizierungsverfahren mit einem einfachen

Perzeptron abgebildet werden könnten.

Inwieweit sich die Szenarien allerdings für eine Klassifizierung mit einem einfachen Perzeptron

eignen, hängt davon ab, ob sich die Datenpunkte aus der Trainingsmenge linear separieren

lassen.
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Szenario Eingaben (Merkmale) Ausgabe: 0 Ausgabe: 1

Klassifizierung

„männlich“ oder

„weiblich“ S. 87

Körpergewicht, Körpergröße, Körper-

fettanteil

Männlich Weiblich

Sprachener-

kennung S. 82

Durchschnittliche Wortlänge, relative Vo-

kalhäufigkeit

Deutsch Französisch

Fische S. 40 Musterung, Bauchfarbe, Schuppenfarbe,

Flossenfarbe

Friedlich Aggressiv

Bewerbung

S. 70

Staatsangehörigkeit, Geschlecht, Eng-

lischkenntnisse, Weitere Sprachen, Aka-

demischer Abschluss, Berufserfahrung

Abgelehnt Eingeladen

Tabelle 5.1: Abbildung von Szenarien der Handreichung auf das Klassifizierungsverfahren

mit einem einfachen Perzeptron.

Betrachtet man das Szenario „Sprachenerkennung“ (s. Seite 82), das im Rahmen des 𝑘-nächste-

Nachbarn-Algorithmus vorgestellt wurde, so stellt sich die Frage, ob es mit dem Verfahren

auch möglich ist, zwischen mehr als nur zwei Klassen (beispielsweise Englisch, Französisch und

Deutsch) zu unterscheiden. Dieses Problem wird gelöst, indem man für jede Klasse ein eigenes

Perzeptron verwendet, das nur feuern soll, wenn die zugehörige Klasse erkannt wurde.

0

1

0

Wortlänge: 6,13

rel. Vokalhäufigkeit: 0,377

Abb. 5.12: Erkennung mehrerer Klassen.

Zur Veranschaulichung wurde in Abbildung 5.12 dargestellt, wie man mit drei Perzeptronen,

die zur Erkennung der jeweiligen Sprache trainiert wurden, anhand der Eingaben eine Klassi-

fizierung durchführen kann. Zur besseren Übersicht wurde auf die Darstellung der jeweiligen

Gewichte und Schwellenwerte verzichtet. Da nur das Perzeptron, das zur Erkennung deutscher
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Texte trainiert wurde, feuert, ist das Label „deutsch“ auch das Klassifizierungsergebnis.

Von einer Verwendung der Heaviside-Funktion als Aktivierungsfunktion ist hier abzuraten,

da die Klassifizierung scheitert, wenn es zu widersprüchlichen Ausgaben kommt. Dies ist der

Fall, wenn beispielsweise sowohl das Perzeptron für „Französisch“ als auch das Perzeptron für

„Englisch“ feuert. Würden die Perzeptronen stattdessen eine kontinuierliche Aktivierungsfunk-

tion verwenden, so könnte beispielsweise für Französisch der Wert 0,89 und für Englisch der

Wert 0,74 ausgegeben werden. Somit legt man sich zwar auf das Label „Französisch“ fest, man

wüsste dann aber auch, dass eine erhebliche Verwechslungsgefahr mit dem Label „Englisch“

besteht.

5.1.7.2 Das Perzeptron als Baustein eines künstlichen neuronalen Netzes

Im Vergleich zu vielen anderen Klassifikatoren benötigt das künstliche Neuron kaum Speicher-

platz und das Klassifizieren ist sehr recheneffizient. Lassen sich die Merkmale aber nicht in zwei

linear separierbare Halbräume aufteilen, so ist dieses Verfahren zur Klassifizierung ungeeignet.

Allerdings können, ähnlich wie Nervenzellen, auch künstliche Neuronen miteinander verbunden

werden. Dies erlaubt dann weitaus komplexere Anordnungen der Trainingsdatenpunkte, wie

folgende Abbildung veranschaulicht:
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Abb. 5.13: Beispiele einer korrekten Klassifizierung von Datenpunkten, die nicht linear separierbar

sind.

Um aus einzelnen künstlichen Neuronen ein künstliches neuronales Netz zu bilden, müssen die

Ausgaben der einzelnen Neuronen mit den Eingaben weiterer Neuronen verbunden werden.
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Ein einfaches künstliches neuronales Netz mit nur fünf Neuronen sieht beispielsweise wie in

Abbildung 5.14 dargestellt aus.

𝑥1

𝑥2

𝑤1

𝑤4

𝑤2

𝑤3

𝑤5

𝑤6

Ausgabe𝜃1

𝜃2

𝜃3

Eingabeschicht Versteckte Schicht Ausgabeschicht

Abb. 5.14: Fünf Neuronen zu einem künstlichen neuronalen Netz kombiniert.

Dabei wird in der Darstellung zwischen drei Schichten unterschieden. Die Eingabeschicht

besteht aus Neuronen, die mit den Eingabedaten direkt verbunden sind und diese direkt

an die nächste Schicht weiterleiten. Darauf folgen eine oder mehrere „versteckte“ Schichten,

die zwischen der Ein- und der Ausgabeschicht liegen. Diese Schichten werden als versteckt

bezeichnet, weil ihre Neuronen normalerweise nicht direkt angesteuert und ihre Ausgabe(n)

nicht direkt beobachtbar sind. Die Ausgabeschicht besteht aus Neuronen, die die Ausgabe des

Netzes erzeugen, die beispielsweise das Ergebnis einer Klassifizierung sein kann.

Das Netzwerk aus Abbildung 5.15 besteht aus vier Eingabeneuronen, zwei versteckten Schichten

mit fünf beziehungsweise drei Neuronen und zwei Ausgabeneuronen. Der Übersichtlichkeit

halber wurde auf die Beschriftung der Gewichte und Schwellenwerte verzichtet.

Durch das Hinzufügen von zusätzlichen versteckten Schichten beziehungsweise durch die

Erhöhung der Anzahl der Neuronen in den versteckten Schichten können immer komplexere

Zusammenhänge modelliert werden. Gleichzeitig besteht aber auch die Gefahr der Über-

anpassung, wie sie bereits im Kapitel Entscheidungsbaum auf Seite 41 thematisiert wurde.

Die optimale Konfiguration der versteckten Schichten hängt von der Aufgabenstellung ab

und kann nicht pauschal angegeben werden. Das Hinzufügen von immer mehr versteckten
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Abb. 5.15: Ein künstliches neuronales Netz mit zwei versteckten Schichten.

Schichten führt dazu, dass das künstliche neuronale Netz immer „tiefer“ wird, was auch als

„Deep Learning“ bezeichnet wird. Es existieren Anwendungen, insbesondere in der Bildverar-

beitung, mit hunderten bis tausenden versteckten Schichten. Allerdings sind die Schichten

nicht zwangsläufig so engmaschig miteinander verbunden, wie in Abbildung 5.15 dargestellt

wurde. Des Weiteren existieren noch andere Arten von künstlichen neuronalen Netzen, die

sich darin unterscheiden, wie die jeweiligen Schichten miteinander verbunden sind.

Die Delta-Lernregel des Perzeptrons ist eine Form des überwachten Lernens. Bei künstlichen

neuronalen Netzen kommt die Delta-Lernregel ebenfalls zum Einsatz, muss aber für die

Neuronen der versteckten Schichten modifiziert werden, da der Fehler 𝛿 nicht direkt ermittelt

werden kann. Diese verallgemeinerte Delta-Lernregel wird als Backpropagation-Algorithmus

bezeichnet und ist aktuell der am häufigsten eingesetzte Algorithmus zum überwachten Lernen

von künstlichen neuronalen Netzen. Diese können auch mit anderen Arten des maschinellen

Lernens trainiert werden, die dafür benötigten Trainingsverfahren unterscheiden sich aber

erheblich von der Delta-Lernregel. Eine vertiefte Betrachtung der künstlichen neuronalen

Netze erfolgt im LehrplanPLUS der 13. Jahrgangsstufe.
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5.2 Didaktische Hinweise / Bezug zum Lehrplan

5.2.1 Einordnung in den Lehrplan

Im LehrplanPLUS findet sich folgende Kompetenzerwartung zum Themenkomplex Perzeptron

und künstliche neuronale Netze:

Die Schülerinnen und Schüler erläutern die Funktionsweise eines künstlichen Neurons

(Perzeptron) und beschreiben den grundsätzlichen Aufbau eines künstlichen neuronalen

Netzes.

Als Inhalte zu den Kompetenzen wird neben dem Perzeptron auch die Delta-Lernregel

angegeben. Es wird darauf hingewiesen, dass die Schülerinnen und Schüler bereits in der

achten Jahrgangsstufe im Fach Biologie den Aufbau und die Funktionsweise einer Nervenzelle

kennengelernt haben.

Im Hinblick auf das einfache Perzeptron wird die Kompetenzerwartung bezüglich der Informatik

(NTG) und der spät beginnenden Informatik folgendermaßen unterschieden:

• Informatik 11 (NTG)

Die Schülerinnen und Schüler implementieren ein künstliches Neuron.

• Spät beginnende Informatik 11 (HG, SG, MuG, SWG)

Die Schülerinnen und Schüler simulieren ein künstliches Neuron.

Zwar wird von den Schülerinnen und Schülern am NTG nicht explizit eine Simulation gefordert,

es bietet sich aber dennoch an, vor der Implementierung eine Simulation durchzuführen, um

die Funktionsweise des künstlichen Neurons, insbesondere die Idee der Delta-Lernregel, zu

veranschaulichen.

Darüber hinaus erwerben die Schülerinnen und Schüler bei der Behandlung des Perzeptrons

zusätzlich folgende Kompetenz:

Die Schülerinnen und Schüler analysieren den Einfluss von Trainingsdaten und

Parametern auf die Zuverlässigkeit der Ergebnisse eines Verfahrens maschinellen

Lernens, ggf. unter Verwendung eines geeigneten Werkzeugs.
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Gerade im Hinblick auf den Einfluss der Trainingsdaten lässt sich beim Perzeptron zeigen,

dass nur dann sinnvolle Ergebnisse zu erwarten sind, wenn eine lineare Separierbarkeit der

Datenpunkte möglich ist. Bezüglich der Delta-Lernregel spielt die Lernrate als Hyperparameter

eine sehr wichtige Rolle, da von dieser abhängt, wie viele Schritte notwendig sind, bis der

Algorithmus terminiert.

5.2.2 Durchführung

Der Vorschlag zur Durchführung des Themenkomplexes ist unabhängig von der Ausbildungs-

richtung, da sich der einzige Unterschied in den Kompetenzerwartungen des Lehrplans auf die

Implementierung des Perzeptrons bezieht. Der entsprechende Abschnitt 5.2.2.4 der Handrei-

chung kann dann für den spät beginnenden Informatikunterricht übersprungen werden.

Insgesamt werden für den Themenkomplex drei Unterrichtsstunden für den spät beginnenden

Informatikunterricht vorgeschlagen. Im Informatikunterricht des NTG kann die Implementie-

rung des Perzeptrons in weiteren zwei Stunden durchgeführt werden.

5.2.2.1 Einstieg

Es bietet sich an, nicht direkt mit dem informatischen Modell des Perzeptrons einzusteigen,

sondern zunächst zu thematisieren, dass sich viele technische Anwendungen die Natur zum

Vorbild machen. Hierzu könnte man in einer Präsentation (siehe Material in Abschnitt 5.3.1.2)

Bilder zeigen, bei denen die Schülerinnen und Schüler die passende technische Anwendung

erkennen beziehungsweise zuordnen sollen. Typische Beispiele sind:

• Mohnblumen =⇒ Salzstreuer

• Kletten-Pflanzen =⇒ Klettverschluss

• Saugnäpfe der Tentakel eines Kraken =⇒ Saugnapf einer Halterung

• Schere einer Krabbe =⇒ Zange
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Ausgehend von dieser Zuordnung lässt sich in einem Unterrichtsgespräch motivieren, dass

man das Ziel, nämlich intelligentes Verhalten zu simulieren, durch eine digitale Nachahmung

des Gehirns erreichen kann. Dazu wird zunächst die Nervenzelle als fundamentaler Baustein

des Gehirns genauer betrachtet.

Hier kann an das Vorwissen der Schülerinnen und Schüler aus der achten Jahrgangsstufe

Biologie angeknüpft werden. Dies kann mit folgender Umsetzung erfolgen: Die Schülerinnen

und Schüler sehen sich einen kurzen Film zum Thema „Neuronen“ mit der Vorgabe an, eine

Nervenzelle zu skizzieren und die Bestandteile zu beschriften. Ein geeigneter Film lässt sich

in der ByCS Mebis-Mediathek finden: https://mebis.link/neuronen.

5.2.2.2 Informatische Modellierung eines Neurons

Nachdem die biologische Nervenzelle thematisiert wurde, sollte als nächstes behandelt werden,

wie man diese informatisch modellieren kann. Dies könnte über eine Präsentation oder

Videosequenz erfolgen (Material in Abschnitt 5.3.1.2). Ohne auf das Lernverfahren selbst

einzugehen, ist es bereits an dieser Stelle sinnvoll, klarzustellen, dass der Schwellenwert und

die Gewichte durch maschinelles Lernen ermittelt werden. Es ist prinzipiell ausreichend, wenn

die Schülerinnen und Schüler anhand der Gleichung

𝑤1 · 𝑥1 + 𝑤2 · 𝑥2 ≥ 𝜃

eine Aussage darüber treffen können, ob ein Perzeptron feuert, also den Wert 1 ausgibt, oder

nicht feuert, also den Wert 0 ausgibt. Eine mathematische Formulierung als Verkettung von

Übertragungs- und Aktivierungsfunktion ist nicht notwendig.

Hinweis: Anstelle des Symbols 𝜃 für den Schwellenwert findet man in manchen Werken auch das

Zeichen 𝑆.

An dieser Stelle empfehlen sich Übungsaufgaben, bei denen die Schülerinnen und Schüler

für ein gegebenes Perzeptron berechnen, ob für gegebene Eingaben ein Perzeptron feuert

oder nicht. Das kann beispielsweise so geschehen, dass ausgehend von einem Perzeptron mit

𝑤1 = −2 , 𝑤2 = 5 , 𝜃 = 10 Eingaben für 𝑥1 und 𝑥2 jeweils im Wertebereich [0; 4] verteilt

werden. Die Jugendlichen sollen für ihre Werte berechnen, ob das Perzeptron feuert, und in

ein Koordinatensystem einen entsprechend roten beziehungsweise grünen Punkt markieren.

Hierzu eignet sich eine Tafel, aber auch ein vorbereitetes Flipchart-Blatt mit roten und grünen

https://mebis.link/neuronen
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Klebepunkten.

Bei diesem Vorgehen erkennen die Schülerinnen und Schüler, dass das Koordinatensystem

linear in zwei Hälften aufgeteilt wird. Man kann dann eine Trennlinie einzeichnen lassen, die

durch eine mathematische Umformung der Formel

−2 · 𝑥1 + 5 · 𝑥2 = 10

zur Geradengleichung

𝑥2 = 0,4 · 𝑥1 + 2

bestätigt werden kann.

Für eine alternative Herangehensweise findet man im Material-Abschnitt 5.3.1.3 zur Handrei-

chung zum einen eine Videosequenz, in der der obige Vorgang simuliert wurde, zum anderen

eine Computeranwendung, bei der die Simulation mit beliebig konfigurierten Perzeptronen

durchgeführt werden kann.

5.2.2.3 Delta-Lernregel

Bevor der Algorithmus thematisiert wird, ist es sinnvoll, die Schülerinnen und Schüler selbst-

ständig im Rahmen eines Szenarios die Gewichte und den Schwellenwert eines Perzeptrons

manuell durch „Ausprobieren“ ermitteln zu lassen. Dazu sollten Trainingsdaten vorbereitet und

auf eine geeignete Lernsoftware zurückgegriffen werden. Der Vorteil dieser Herangehensweise

ist, dass die Schülerinnen und Schüler explorativ lernen, welche Auswirkungen eine Erhöhung

beziehungsweise Verringerung der Gewichte und des Schwellenwerts mit sich bringt. Es stehen

mehrere Tools zur Verfügung (s. Abschnitt 5.3.2), mit denen das Perzeptron simuliert werden

kann.

Nachdem die Schülerinnen und Schüler manuell die Gewichte und den Schwellenwert des

künstlichen Neurons ermittelt haben, soll nun die Frage nach einer automatisierten Umsetzung

des Lernverfahrens in Form eines Algorithmus thematisiert werden. Dazu bietet es sich an, ein

Beispiel (s. Abbildung 5.16) zu präsentieren, bei dem ein Perzeptron bereits so konfiguriert

ist, dass nur ein Datenpunkt knapp falsch klassifiziert wird.

Anhand dieses und weiterer Beispiele können nun die Formeln (zunächst für 𝛼 = 1) zur Delta-

Lernregel erläutert werden (s. Abschnitt 5.1.4.2). Insgesamt sollen die drei Möglichkeiten für
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Abb. 5.16: Ein vorkonfiguriertes Perzeptron, das alle Trainingsdaten bis auf Datenpunkt 𝐶 richtig

klassifiziert.

die Belegung von 𝛿 veranschaulicht werden.

Der Einfluss der Lernrate 𝛼 kann am besten mit einem Tool (s. Abschnitt 5.3.2) verdeutlicht

werden. Die Schülerinnen und Schüler verwenden dabei Trainingsdaten, die linear separierbar

sind. Dadurch kann der Algorithmus terminieren, wenn alle Trainingsdaten richtig klassifiziert

werden.

Hinweis: Die Erläuterung der Delta-Lernregel kann auch mithilfe des Tools „Demonstrator für

maschinelles Lernen“ (genauer in Abschnitt 5.3.2) erfolgen, da hierbei die Schritte samt

Berechnungen visualisiert werden und man jederzeit Zugriff auf alle Parameter hat

(s. Abbildung 5.17).

Abb. 5.17: Veranschaulichung der Delta-Lernregel mithilfe des Tools „Demonstrator für maschinelles

Lernen“.
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5.2.2.4 Implementierung des Perzeprons (nur NTG)

Vor der Implementierung bietet es sich an, zunächst das künstliche Neuron zu modellieren.

Dazu stellt man ein Perzeptron, das zuvor schon im Unterricht behandelt wurde, zunächst als

Objekt dar:

𝑥2

𝑥1

1,5

1

0,5

Ausgabe

p1 : PERZEPTRON

w1 = 1

w2 = 0,5

theta = 1,5

lernrate = 0,01

Abb. 5.18: Modellierung eines Perzeptrons als Objekt.

Wie man sieht, wird in dem Beispiel von zweidimensionalen Datenpunkten ausgegangen, was

ausreicht, um die Kompetenzerwartung zu erfüllen.

Im Gegensatz zum Attribut lernrate erscheinen w1, w2 und theta recht offensichtlich.

Theoretisch wäre denkbar, auf den Hyperparameter zu verzichten und einen Wert als Konstante

bei der Implementierung direkt in den Code einzufügen. Dies hat aber den Nachteil, dass man

dann die Möglichkeit verliert, diesen Wert zur Laufzeit zu ändern.

Als nächstes wird geklärt, welche Methoden

ein Objekt der Klasse PERZEPTRON bereitstel-

len muss, woraufhin dann die Klasse modelliert

werden kann. Aus objektorientierter Sicht wä-

re es zwar geschickter, die Übertragungs- und

Aktivierungsfunktion in eigene Methoden aus-

zulagern, da man dann diese in Unterklassen

einfach überschreiben könnte (um beispielswei-

se die Heaviside- mit der Sigmoidfunktion aus-

zutauschen).

PERZEPTRON

− w1

− w2

− theta

− lernrate

+ Perzeptron(neueLernrate)

+ berechneLabel(x1,x2)

+ lerne(x1,x2,erwartetesLabel)

Da dies aber vorher nicht explizit thematisiert wurde, können die Schülerinnen und Schüler

diese zusätzlichen Methoden nicht nachvollziehen. Die Java-Klasse, die in Abschnitt 5.1.6 auf

Seite 139 präsentiert wurde, kann für den Unterricht vereinfacht werden:
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public class Perzeptron {

private double w1;

private double w2;

private double theta;

private double lernrate;

public Perzeptron(double neueLernrate) {

lernrate = neueLernrate;

}

public void lerne(double x1, double x2, double erwartetesLabel) {

double delta = erwartetesLabel - berechneLabel(x1,x2);

w1 = w1 + lernrate * delta * x1;

w2 = w2 + lernrate * delta * x2;

theta = lernrate * theta - delta;

}

public double berechneLabel(double x1, double x2) {

if(w1 * x1 + w2 * x2 >= theta) {

return 1.0;

} else {

return 0.0;

}

}

}

Im Unterrichtsverlauf könnte die Wahl des Datentyps des Rückgabewerts der Methode

berechneLabel(x1,x2) thematisiert werden. Die Entscheidung für double lässt sich dahinge-

hend erklären, dass bei den Formeln auch einige Variablen double-Werte abspeichern und eine

Mischung von verschiedenen Datentypen innerhalb einer Berechnung häufig zu Problemen

führt. Damit wäre auch erklärt, warum der Parameter erwartetesLabel ebenfalls mit double

deklariert wurde.
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Hinweis: Es ist für die Schülerinnen und Schüler wenig motivierend, nur die Java-Klasse zu

programmieren, ohne danach zu sehen, wie das Perzeptron mit Trainingsdaten lernt.

Tatsächlich ist aber der zeitliche Aufwand, den Rahmen für ein Training im Unterricht zu

implementieren, kaum zu rechtfertigen, zumal dies keinen Kompetenzgewinn bezüglich

der im Lehrplan ausgewiesenen Erwartungen bringt. Daher sollte eine Klasse, die das

selbst implementierte Perzeptron nutzt, den Schülerinnen und Schülern zur Verfügung

gestellt werden (s. Abschnitt 5.3.3), damit sie auch erleben können, wie „ihr“ Perzeptron

lernt. An dieser Stelle bietet es sich an, differenziert nach Leistungsstand der Schülerinnen

und Schüler unterschiedlich weit ausgearbeitete Vorlagen zu verwenden. Für besonders

leistungsstarke Schülerinnen und Schüler besteht die Möglichkeit, das Perzeptron für

𝑛-dimensionale Eingaben mit einer indizierten Datenstruktur zu implementieren.

5.2.2.5 Aufbau eines künstlichen neuronalen Netzes

Als Einstieg bietet es sich an, anhand von Beispielen noch einmal hervorzuheben, dass das

Perzeptron auf Trainingsdatenpunkte beschränkt ist, die sich linear separieren lassen. In

folgender Abbildung ist offensichtlich keine trennende Gerade möglich:
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Abb. 5.19: Trainingspunkte, die sich nicht linear separieren lassen.
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Dennoch kann plausibel gemacht werden, dass man das Problem in zwei Teilprobleme zerlegen

kann, für die jeweils ein Perzeptron zuständig ist:
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𝐷
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0,22

−1

Ausgabe

Perzeptron 2

Abb. 5.20: Separierung der beiden oberen grünen Datenpunkte (oben) bzw. der beiden unteren

grünen Datenpunkte (unten) jeweils durch eine Gerade.

Man kann erkennen, dass Eingaben dann mit einer 1 (grün) gelabelt werden müssen, wenn

entweder das Perzeptron 1 oder das Perzeptron 2 feuert. Dies kann dadurch erreicht werden,

dass die Ausgaben beider Perzeptronen in ein drittes Perzeptron als Eingaben fließen, das

genau dann feuert, wenn mindestens eine 1 eingegeben wird (Abbildung 5.21).

Somit wird den Schülerinnen und Schülern deutlich, warum es lohnend sein kann, einzel-

ne Neuronen zu einem künstlichen neuronalen Netz zu verbinden. Daraufhin können die

verschiedenen Schichten eingeführt werden (Abbildung 5.22).
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Abb. 5.21: Separierung der grün bzw. rot gelabelten Datenpunkte durch zwei Geraden.
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Abb. 5.22: Künstliches neuronales Netz mit fünf Neuronen zur Separierung der Datenpunkte aus

Abbildung 5.19.



5.3 Material 155

5.3 Material

5.3.1 Einführung des Perzeptrons

5.3.1.1 Bilder zu technischen Anwendungen und den Vorbildern aus der Natur

In Abschnitt 5.2.2.1 sollten die Schülerinnen und Schüler technische Anwendungen ihren Vor-

bildern aus der Natur zuordnen. Hierzu befindet sich im Materialordner die Präsentation Die

Natur als Vorbild.pptx, die für den Unterricht geeignetes Bildmaterial enthält. Die Bilder

stehen größtenteils unter einer Creative-Commons-Lizenz. Die entsprechenden Nutzungsrechte

sind auf der zweiten Folie aufgeführt.

5.3.1.2 Gegenüberstellung Nervenzelle und Perzeptron (Präsentation / Video)

Im Materialordner befindet sich eine Präsentation, die sich zur Einführung des einfachen

Perzeptrons eignet. Dabei findet eine Gegenüberstellung zur Nervenzelle statt. Ziel ist die

Einführung der Ungleichung, mit der geprüft werden kann, ob das Perzeptron feuert: 𝑤1 · 𝑥1 +

𝑤2 · 𝑥2 ≥ 0. Des Weiteren befindet sich im gleichen Ordner ein kurzes Video zur Einführung

der Ungleichung. Man könnte dieses Video beispielsweise einsetzen, wenn man nach dem

Flipped-Classroom-Prinzip arbeitet.

5.3.1.3 Simulation eines Perzeptrons

Wenn die Schülerinnen und Schüler das künstliche Neuron kennenlernen, ist es wichtig, zu

veranschaulichen, dass durch dieses Modell eine lineare Trennung der Daten stattfindet. Hierzu

gibt es im Materialordner eine Anwendung, mit der man ein Perzeptron (für zweidimensionale

Datenpunkte) konfigurieren kann. Anschließend kann man für einzelne Datenpunkte, die man

entweder manuell eingibt oder zufällig gewählt werden, berechnen, ob das Perzeptron feuert.

Die Ergebnisse werden durch Datenpunkte, die entsprechend der berechneten Label gefärbt

sind (Wertebereich [0; 5] auf beiden Achsen), visualisiert. Aus diesen lässt sich auf eine Gerade

schließen, die die Datenpunkte separiert.
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Abb. 5.23: Anwendung zur Simulation eines einfachen Perzeptrons.

Bei den Eingaben muss darauf geachtet werden, dass die Dezimaltrennung durch ein Komma

erfolgt. Die Anwendung wurde unter .NET entwickelt und sollte auf allen Systemen lauffähig

sein, die die Plattform unterstützen. Bei Windows ist sie beispielsweise automatisch integriert.

Auf Linux-Systemen müsste vorher das Mono-Paket installiert werden. Zusätzlich befindet

sich im Materialordner ein kurzes Video, das die Benutzung des Programms durchspielt.

5.3.2 Delta-Lernregel

5.3.2.1 Demonstrator für maschinelles Lernen

Um den Schülerinnen und Schülern die Funktionsweise der Delta-Lernregel (s. Abschnitt 5.2.2.3)

zu veranschaulichen, bietet es sich an, im Unterricht den Demonstrator für maschinelles Lernen

einzusetzen. Die neueste Programmversion kann auf der Seite https://klassenkarte.de

heruntergeladen werden. Die Anwendung wurde in Java entwickelt und setzt daher eine

aktuelle Java-Installation (mindestens Version 8) voraus. Nach dem Start stehen die Auswahl-

möglichkeiten aus Abbildung 5.24 zur Verfügung.

Für die Delta-Lernregel ist nur die rechte Seite von Bedeutung. Die Schaltfläche „Sprachener-

kennung: Gewichte lernen“ bezieht sich auf das Szenario, das in Abschnitt 4.1.2 beschrieben

wurde. Ähnlich wie beim 𝑘-nächste-Nachbarn-Algorithmus (s. Abschnitt 4.3.2) können im

https://klassenkarte.de
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Abb. 5.24: Startmenü des Demonstrators für maschinelles Lernen.

Verzeichnis „daten_sprachen_perzeptron“ Trainingsdaten in Form von Textdateien abgelegt

werden. Da es sich beim Perzeptron um einen binären Klassifikator handelt, werden alle

Texte, deren Dateinamen mit „1_“ beginnen, der Klasse 1 (Perzeptron feuert) zugeordnet,

alle anderen der Klasse 0 (Perzeptron feuert nicht).

Alternativ können durch Betätigung der unteren Schaltfläche die Trainingsdaten aus einer

CSV-Datei eingelesen werden (s. Abschnitt 4.3.2.3). Dabei kann ein Datenpunkt wieder nur

mit „0“ oder „1“ gelabelt sein.

Nach dem Start öffnet sich das Hauptfenster. Dem Benutzer bzw. der Benutzerin stehen

zwei Möglichkeiten zur Verfügung, um das Perzeptron zu konfigurieren. Standardmäßig ist

„Manuell“ ausgewählt (s. Abbildung 5.25, Pfeil). Im unteren Bereich des Fensters befinden

sich drei Schieberegler, mit denen die Gewichte und der Schwellenwert eingestellt werden

können.

Wählt man die Option „Maschinell“ (s. Abbildung 5.26, Pfeil 1), so werden zusätzliche

Elemente eingeblendet. Bei der Wahl von „Einzelschritt“ (Pfeil 2) kann anschaulich die Delta-

Lernregel für einen ausgewählten Datenpunkt durchgespielt werden. Die Lernrate 𝛼 kann

ebenfalls konfiguriert und jederzeit geändert werden. Durch den Klick auf „Weiter“ werden

die einzelnen Schritte ausgeführt und die Ergebnisse der Berechnungen angezeigt.

Das Trainieren des Perzeptrons dauert im Einzelschrittmodus in der Regel zu lange. Daher

kann man alternativ die Delta-Lernschritte in einer Endlosschleife wiederholen lassen (Pfeil 3).

Die Geschwindigkeit, mit der trainiert wird, kann über die Optionsknöpfe rechts gesteuert

werden. Die Wiederholung lässt sich durch einen weiteren Klick auf die Schaltfläche (Pfeil 3)
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Abb. 5.25: Durch die drei Regler im unteren Bereich lässt sich das Perzeptron manuell konfigurieren.

Abb. 5.26: Veranschaulichung der Delta-Lernregel.

unterbrechen.

Im Materialordner befindet sich das Video Perzeptron trainieren.mp4, das anhand des

Demonstrators für maschinelles Lernen die Delta-Lernregel erklärt.
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5.3.2.2 Perzeptron-Simulator

An der Didaktik der Informatik der Universität Passau wurde der Perzeptron-Simulator

(s. Abbildung 5.27) entwickelt, der sich ebenfalls eignet, die Delta-Lernregel zu veranschaulichen.

Wie beim Demonstrator für maschinelles Lernen können Trainingsdaten über eine CSV-Datei

geladen werden. Das Tool ist sowohl auf Windows- als auch auf Apple-Geräten lauffähig. Die

Software sowie das zugehörige Benutzerhandbuch finden sich im Materialordner.

Abb. 5.27: Grafische Oberfläche des Perzeptron-Simulators.

5.3.3 Testen der Implementierung des Perzeptrons

Im Rahmen dieser Handreichung wird eine Java-Klasse zur Verfügung gestellt, mit der Schü-

lerinnen und Schüler ihre eigene Implementierung des Perzeptrons testen können. Hierzu

findet man im Materialordner ein BlueJ-Projekt (ImplementierungPerzeptron Vorlage),

das diese Klasse enthält und an die Schülerinnen und Schülern verteilt werden kann.

Nach dem Öffnen des BlueJ-Projekts steht die Klasse LABOR zur Verfügung. Nachdem die Schü-

lerinnen und Schüler die Klasse Perzeptron entsprechend dem Vorschlag in Abschnitt 5.2.2.4
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entwickelt haben, können sie ein Objekt der Perzeptron-Klasse erzeugen. Anschließend instan-

ziieren sie ein Objekt der Klasse LABOR und übergeben das Perzeptron-Objekt im Konstruktor.

Die Klasse LABOR hat folgende Methoden:

ladeTrainingsdaten(Dateiname)

Hiermit kann eine CSV-Datei geöffnet werden, die gelabelte Daten enthält. Die Formatierung

ist kompatibel mit dem Dateiformat für den Demonstrator für maschinelles Lernen (s. Ab-

schnitt 5.3.2.1). Alle Datenpunkte, die nicht mit einer 1 gelabelt wurden, erhalten das Label

0. Der beste Speicherort für die Trainingsdaten ist das Projektverzeichnis, da man hier auf

die Angabe eines Dateipfades verzichten kann.

visualisiere()

Es wird ein Fenster geöffnet, das die Trainingsdatenpunkte in einem Koordinatensystem

anzeigt. Wie beim Demonstrator für maschinelles Lernen findet eine Skalierung statt, um

die Datenpunkte übersichtlich anzuzeigen. Dennoch fließen in die späteren Berechnungen die

Originaldaten und nicht die skalierten Daten ein. Die Schülerinnen und Schüler können in der

Anzeige zusätzlich Trainingsdatenpunkte hinzufügen oder löschen. Die Visualisierung steht

auch dann zur Verfügung, wenn keine Trainingsdaten aus einer Datei geladen wurden. Somit

können die Schülerinnen und Schüler mit verschiedenen Konstellationen der Datenpunkte

experimentieren. Nach dem Trainingsvorgang werden die Halbräume angezeigt, indem das

Perzeptron-Objekt alle Punkte des dargestellten Koordinatensystems auswertet und diese

dann in der Oberfläche rot bzw. grün eingefärbt werden.

überprüfePerzeptron()

Die Methode zeigt anhand einer Bildschirmausgabe die Anzahl an Trainingspunkten, die von

dem Perzeptron aktuell falsch klassifiziert werden. Hierbei wird die Methode zur Klassifizierung

eines Datenpunktes des Perzeptron-Objekts verwendet.

trainiereEinmal()

Das Perzeptron wird einmal mit allen Datenpunkten trainiert, indem jeweils die Lern-Methode

des Perzeptron-Objekts aufgerufen wird. Die Reihenfolge der Datenpunkte ist zufällig.

trainiere(MaximaleAnzahlAnDurchläufen)

Die Methode trainiereEinmal() wird so lange wiederholt, bis alle Trainingspunkte richtig
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klassifiziert werden. Überschreitet die Anzahl der Iterationen den Wert, der als Methodenpa-

rameter übergeben wurde, so bricht die Wiederholung ab.

Die Arbeit mit der Projektvorlage wird in Abbildung 5.28 dargestellt. Es bietet sich an, dass

sich die Schülerinnen und Schüler die Objektkarte des Perzeptrons anzeigen lassen, da sie

so direkt mitverfolgen können, wie sich die Attributwerte nach jedem Training ändern. Im

Materialordner befindet sich ein Video, in dem die Verwendung der BlueJ-Vorlage vorgeführt

wird.

Abb. 5.28: Arbeiten mit der LABOR-Klasse der Projektvorlage.

Hinweis:

Sämtliche Bezeichner, wie Klassen- und Methodennamen, sind von der Lehrkraft beziehungs-

weise den Schülerinnen und Schülern frei wählbar. Das LABOR-Objekt erkennt die benötigten

Methoden an ihrer Signatur:

Label berechnen:

double Methodenname(double Parameter1, double Parameter2)
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Delta-Lernschritt:

void Methodenname(double Param1, double Param2, double Param3)

Sollte es zu einer Mehrdeutigkeit kommen, so würde bei der Instanziierung eine Aufforderung

erscheinen, die entsprechende Methode anzugeben. Wichtig ist, dass der dritte Parameter der

Methode, in dem ein Schritt der Delta-Lernregel durchgeführt wird (s. Abschnitt 5.28), das

Label angibt.

5.3.4 Weitere Anwendungen

5.3.4.1 Open Roberta

Hierbei handelt es sich um eine Online-Entwicklungsumgebung (https://www.open-roberta.

org/), in der Schülerinnen und Schüler mit einer graphischen Programmiersprache arbeiten

(s. Abbildung 5.29). Entwickelt wurde das Open-Source-Projekt vom Fraunhofer-Institut

IAIS. Teil des sehr umfangreichen Pakets sind auch Module zum Perzeptron beziehungsweise

zu künstlichen neuronalen Netzen. Ein virtueller Roboter kann beispielsweise anhand von

Sensordaten lernen, wie er Hindernisse umfährt. Der Lehrplanabschnitt, der sich auf das

Perzeptron beziehungsweise auf das künstliche neuronale Netz bezieht, lässt sich damit

prinzipiell umsetzen. Da das Szenario nur die Robotik betrifft und die Schülerinnen und Schüler

vorab Erfahrungen mit dem System sammeln müssen, bevor sie sich mit dem Perzeptron

beschäftigen, ist Open Roberta gut für den Lernbereich 5 „Vertiefung“ (NTG Lehrplan)

geeignet.

5.3.4.2 Unravel

Ein weiteres Online-Tool, das sich im Lernbereich 5 „Vertiefung“ (NTG Lehrplan) gewinn-

bringend einsetzen lässt, ist Unravel (https://klassenkarte.de). Mit dieser didaktischen

Anwendung lassen sich alle Schritte eines Bilderkennungssystems, angefangen von der Aufnah-

me bis hin zur Klassifikation mit einem künstlichen neuronalen Netz, durchspielen. Trainings-

und Testdaten lassen sich von den Schülerinnen und Schülern selbst generieren, da die An-

wendung auf eine angeschlossene Kamera (beispielsweise Dokumentenkamera oder Webcam)

https://www.open-roberta.org/
https://www.open-roberta.org/
https://klassenkarte.de
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zugreifen kann. Das Video https://www.youtube.com/watch?v=hqJrYbcJ5po führt in das

System ein.

Abb. 5.29: Programmierumgebung des Open Roberta Labs.

Abb. 5.30: Mit dem Online-Tool Unravel können Schülerinnen und Schüler alle Schritte eines

Bilderkennungssystem erleben.

5.3.5 Aufgabenbeispiel für eine Leistungserhebung

In der Fabrik eines Lebensmittelkonzerns werden Schachteln mit jeweils acht Fischstäbchen

automatisiert befüllt. Leider kommt es in seltenen Fällen vor, dass in einer Verpackung zu wenig

https://www.youtube.com/watch?v=hqJrYbcJ5po
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Fischstäbchen enthalten sind. Daher soll der Prozess künftig mithilfe künstlicher Intelligenz

unter Zuhilfenahme eines Perzeptrons überwacht werden. Dabei soll dieses „feuern“, wenn ein

fehlerhaftes Produkt erkannt wurde, um es dann auszusortieren. Hierzu misst ein Sensor die

Helligkeit des reflektierten Lichts 𝑙 (Maßeinheit Candela) einer offenen Schachtel mit weißem

Boden und eine Waage misst die Masse 𝑚 der Schachtel in Gramm. Da sich das Produkt bei

der Messung auf einem Förderband befindet, sind die Messungen allerdings fehlerbehaftet.

Zur Verdeutlichung werden in der folgenden Abbildung zwei Beispiele dargestellt.

(1) Beurteilen Sie, inwieweit die beiden Merkmale „reflektiertes Licht“ 𝑙 und „Masse“ 𝑚 für

die Aufgabe geeignet sind.

Lösungsvorschlag:

Fehlen Fischstäbchen, dann ist die Masse geringer als diejenige einer vollen Schachtel.

Gleichzeitig wird mehr Licht reflektiert, weil ein größerer Teil der Fläche des weißen

Schachtelbodens beleuchtet wird. Wenn die Messungen genau genug sind, damit die

Datenpunkte linear separierbar sind, dann ist das Perzeptron gut geeignet.

(2) Öffnen Sie den Demonstrator für maschinelles Lernen und verwenden Sie die CSV-

Datei. Diese enthält Trainingsdaten, die von dem Programm normalisiert wurden.

Bestimmen Sie möglichst geeignete Parameter des Perzeptrons für die normalisierten

Trainingsdatenpunkte.

Lösungsvorschlag:

𝑤1 = −0,26; 𝑤2 = 0,34; 𝜃 = 4

(3) Gegeben ist der skalierte Datenpunkt, der durch die Werte 𝑥1 = 400 und 𝑥2 = 150

festgelegt ist. Bestimmen Sie die Ausgabe des Perzeptrons aus Teilaufgabe 2 und
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interpretieren Sie das Ergebnis.

Lösungsvorschlag:

−0,26 · 400 + 0,34 · 150 ≥ 4 ⇐⇒ −53 ≥ 4

Das Perzeptron feuert nicht, da der Schwellenwert nicht überschritten wird. Das bedeutet,

das Produkt wird als korrekt klassifiziert.

(4) Das Perzeptron soll unter Zuhilfenahme weiterer gelabelter Daten trainiert werden.

Beschreiben Sie den Ablauf eines Schritts mit der Delta-Lernregel. Eine Betrachtung

der Lernrate ist nicht gefordert.

Lösungsvorschlag:

Als Erstes wird für einen Trainingsdatenpunkt das Label berechnet. Entspricht das

erwartete Label dem berechneten Label, so sind keine Anpassungen der Gewichte und

des Schwellenwerts nötig. Ist das erwartete Label kleiner als das berechnete Label, so

müssen die Gewichte verringert und der Schwellenwert erhöht werden. Falls das erwartete

Label größer als das berechnete Label ist, dann müssen die Gewichte erhöht und der

Schwellenwert verringert werden.
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6.1 Fachliche Grundlagen

6.1.1 Hoffnungen und Sorgen

„Dichten“ und „richten“ (Zweig, 2019, S. 206); für Katharina Zweig sind diese beiden plakativen

Schlagworte für Anwendungen der KI mit besonderer Sorge für unsere Gesellschaft verbunden.

Wobei diese „Sorgen“ nicht zwangsläufig zu Problemen, schädlichen Entwicklungen und

Dystopien führen müssen. Vielmehr zeigen sie gesellschaftliche Handlungsfelder auf, in denen

Menschen aktiv werden müssen, um „Hoffnung“ auf positive Entwicklungen zu schaffen.

Die Fähigkeit, dass KI-gestützte Systeme kreative Aufgaben übernehmen können („dichten“),

stellt eine der ältesten Ängste der Menschen vor Computersystemen dar. „Plötzlich“ können

Maschinen kreative Arbeiten erledigen, für die sie Fähigkeiten benötigen, die bisher nur von

Menschen ausgeführt werden konnten. Dieser Entwicklung muss auf arbeits-, bildungs- und

sozialpolitischer Ebene (vgl. Zweig, 2019, S. 206) begegnet werden, um eine gesellschaftliche

Transformation zu begleiten und eine Disruption zu vermeiden. Der Sorge vor dem „Richten“

muss mit technologischen, juristischen und ethisch-sozialen Aspekten entgegengetreten werden.

KI-gestützte Entscheidungssysteme müssen im Hinblick auf Verwendung, Entwicklung und

Datennutzung nachvollziehbar gestaltet und genutzt werden. Dann kann sich auch aus diesen

Systemen eine Verbesserung im Hinblick auf Effizienz, Gerechtigkeit und Fairness ergeben.

Aus diesen Hoffnungen und Sorgen können daher Chancen und Risiken für Individuum und

Gesellschaft abgeleitet werden, die aber nicht zwangsläufig zu „Gutem“ oder „Schlechtem“

führen müssen. Sorgen können so beispielsweise auch mit der Bestimmung entsprechender

Regeln oder Rahmenbedingungen ausgeräumt werden, bevor sie zu Risiken werden. Die

Hoffnungen werden erst zu Chancen, wenn sie umsetzbar sind und auch die gewünschten

Ergebnisse erzielen.

Dieses Kapitel zeigt Ansatzpunkte und Strukturen für eine fundierte, differenzierte und

systematische Analyse der Chancen und Risiken von ausgewählten KI-Systemen auf. Damit

sollen die Schülerinnen und Schüler befähigt werden, diese System aus technischer Sicht

(s. vorherige Kapitel) sowie aus der gesellschaftlichen, staatsbürgerlichen und individuellen

Perspektive beurteilen zu können.
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6.1.2 Die Rolle des Menschen in KI-Systemen

„Die Zukunft ist vorhersehbar und Morde können durch Künstliche Intelligenz verhindert

werden [...][.] Das ist der Stoff für den Science-Fiction-Thriller ‚Minority Report‘ mit Tom

Cruise. Doch Pre-Policing ist längst nicht mehr reine Zukunftsvision aus Hollywood: Die auf

Künstlicher Intelligenz basierenden Ermittlungsmethoden sind Teil alltäglicher Polizeiarbeit.“

(vgl. Bartlett-Mattis, 2021).

6.1.2.1 Beispiel Predictive Policing: SKALA

Die vom nordrhein-westfälischen Landeskriminalamt entwickelte Software SKALA soll Progno-

sen über Kriminalitätsrisiken abgeben und diese mithilfe der Software SKALA|MAP auf einer

Karte visualisieren. Dazu werden neben den polizeilich aufgezeichneten Fällen auch infrastruk-

turelle Gegebenheiten und soziodemographische Informationen zur Kriminalitätsprävention

herangezogen. SKALA wurde 2016 bis 2018 in einem Forschungsprojekt entwickelt. Seither

ist es als Instrument zur „Prognose von Kriminalitätsbrennpunkten“1 fest in der Polizeiarbeit

etabliert.

Um zu verstehen, welche Auswirkungen dieses System auf die Gesellschaft und auf einzelne

Bevölkerungsgruppen hat, muss der Prozess des Predictive Policing nach Bode et al. (2017)

genauer betrachtet werden:

Info (Predictive Policing (Bode et al., 2017, S. 2))

Abbildung 6.1: Ablauf des Predicitve Policing Prozesses (Bode et al., 2017, S. 2).

1https://polizei.nrw/artikel/projekt-skala-predictive-policing-in-nrw

https://polizei.nrw/artikel/projekt-skala-predictive-policing-in-nrw
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Schritt 1: Daten

Der Prozess beginnt im ersten Schritt mit der Sichtung und Auswahl von Datenquellen

sowie der Sammlung und Aufbereitung von Datensätzen, die in den weiteren Bestand-

teilen des Prozesses verarbeitet werden. Mit entsprechender Software ist es möglich,

verschiedene Datenquellen miteinander in Beziehung zu setzen. Zentral ist hierbei die

raum- und zeitbezogene Zusammenführung. Dabei können polizeiliche Vorgangsdaten

mit nicht-polizeilichen Daten (z. B. Daten zur Wetterlage, Wohnlage oder Entfernung zur

nächstgelegenen Autobahn) kombiniert werden. In diesem Zusammenhang ist wichtig,

dass alle ausgewählten Daten geografisch referenziert werden können, sodass ein einheit-

licher, maschinell verarbeitbarer Datensatz vorliegt, der die Basis für Predictive Policing

darstellt. [...]

Schritt 2: Modellierung

Zu Beginn wird ein konkretes Modell unter Verwendung der vorliegenden historischen

Daten erstellt, um die Kriminalitätslage möglichst angemessen in allen gewünschten

Facetten abzubilden. Beispielsweise wäre eine Modellierung mittels Regressionen, Ent-

scheidungsbäumen oder künstlicher neuronaler Netze möglich. [...]

Schritt 3: Prognoseberechnung

Das erstellte Modell wird auf aktuelle bzw. mögliche zukünftige Daten angewendet, um

die Wahrscheinlichkeit eines bestimmten Delikts in einer geografischen Bezugsgröße zu

ermitteln. Dieser Schritt stellt die eigentliche Prognoseberechnung dar und ist, mit den

aus Schritt 2 gewonnen Erkenntnissen, das Herzstück im Predictive-Policing-Prozess. Das

Ergebnis der Berechnung präsentiert sich regelmäßig in einer Auswahl an geografischen

Räumen, die ein höheres Kriminalitätsrisiko aufweisen als andere Räume im gleichen

Prognosezeitraum. [...]

Schritt 4 / 5: Prognosedarstellung und -verwertung

Schritt 4 sieht die adäquate Darstellung der Kriminalitätsprognosen vor, um sie sodann

im Feld (meist durch operative Polizeieinheiten) einzusetzen (Schritt 5). [...]

Schritt 6: Evaluation

Dieser Schritt umfasst, bezogen auf den methodischen Predictive-Policing-Prozess, die
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durchgehende Evaluation und Bewertung der angewandten Methoden. Es handelt sich

um die formale, statistische Beschreibung von beobachteten Effekten, z. B. mit der Be-

rechnung von Trefferraten als auch durchgehende Plausibilitätsprüfungen und Ad-Hoc

Verifikationen von Zwischenergebnissen, um beispielsweise die Eignung der gewählten

Methode in den Schritten 2 und 3 oder der gewählten Visualisierungstechnik in Schritt 4

kontinuierlich sicherzustellen. [...]

6.1.2.2 Predictive Policing: Hoffnung und Sorge

Mithilfe von Systemen wie SKALA können Polizeibeamte in Echtzeit verdichtete Informa-

tionen aus unterschiedlichen Quellen erhalten und für ihre Arbeit nutzen. Damit kann die

Kriminalität ggf. sogar schon vor der Entstehung verhindert werden. Ein unparteiisches

System, das objektiv die Fakten auswertet und darauf aufbauend Entscheidungen trifft, die

der Allgemeinheit nutzen (hier Verbrechen verhindert), ist eine Hoffnung für die Gesellschaft.

Wie eingangs bereits angesprochen, sind diese KI-Systeme oftmals auch mit Sorgen verbun-

den. So erklärte das Bundesverfassungsgericht eine Datenanalyse-Software bei der Polizei in

Hessen und Hamburg für verfassungswidrig. Unter anderem bemängelten die Richterinnen

und Richter, dass die Art und die Menge der einsetzbaren Daten kaum begrenzt sei: „Die

Vorschriften unterscheiden insbesondere nicht nach Daten von Personen, die einen Anlass

für die Annahme geben, sie könnten eine Straftat begehen oder in besonderer Verbindung

zu solchen Personen stehen, und anderen Personen. Sie lassen eine breite Einbeziehung von

Daten Unbeteiligter zu, die deshalb polizeilichen Ermittlungsmaßnahmen unterzogen werden

könnten.“2

„Ausgewertet werden mit der hessischen Software zunächst einmal nur Daten aus Polizeibestän-

den. In einer der entsprechenden Datenbanken sind allerdings auch Opfer und Zeugen erfasst

– oder jemand, der beispielsweise einmal einen Kratzer am Auto zur Anzeige gebracht hat.

Die Gesellschaft für Freiheitsrechte (GFF), die die Überprüfung in Karlsruhe angestoßen hat,

sieht außerdem die Gefahr, dass auch externe Daten einfließen, etwa aus sozialen Netzwerken.

Das System lade geradezu dazu ein, immer mehr Informationen einzuspeisen.“2 In diesem

Fall stellt sich die Frage, wie objektiv die Entscheidung derartiger Systeme tatsächlich sind.

Wie werden diese beeinflusst, oder besser, wer beeinflusst diese Systeme? Um zu analysieren,
2https://www.spiegel.de/netzwelt/netzpolitik/bundesverfassungsgericht-schraenkt-einsatz-von-

polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0

https://www.spiegel.de/netzwelt/netzpolitik/bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://www.spiegel.de/netzwelt/netzpolitik/bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
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an welchen Stellen der Entwicklung und Verwendung von KI-Systemen, wie dem Predicitve

Policing, menschliche Entscheidungen Auswirkungen auf das Ergebnis haben, kann die lange

Kette der Verantwortlichkeit (s. Abschnitt 6.1.2.3) herangezogen werden.

6.1.2.3 Menschen an Schaltstellen – die lange Kette der Verantwortlichkeiten

Mithilfe der langen Kette der Verantwortlichkeit (s. Abbildung 6.2) können Einflussmöglich-

keiten des Menschen auf die Entwicklung und Verwendung von KI-gestützten Entscheidungs-

systemen identifiziert werden.

Algorithmus

Vorhandene Daten mit

bekanntem Ergebnis

Entscheidungsregeln Interpretation Aktion

Feedback

Neue Daten

Qualität und Fairness

Abbildung 6.2: Lange Kette der Verantwortlichkeiten (Zweig, 2019, S. 29).

Im Folgenden wird bei den Bestandteilen der langen Kette der Verantwortlichkeit von „Fehlern“

gesprochen, die nicht zwingend der Wortbedeutung nach auf falsches Verhalten zurückzuführen

sind, sondern auch auf Subjektivität, Vorbelastung oder eigener Vorstellung der beteiligten

Personen fußen. Trotzdem können sie die Ergebnisse der KI-Systeme negativ beeinflussen.

Algorithmus

Bereits beim Design und in der Implementierung von Algorithmen können verschiedene

handwerkliche Fehler auftreten. Die Möglichkeit, solche Fehler zu finden, hängt wesentlich

von drei Aspekten ab:

• Nutzerbasis: Von wie vielen Personen kann der Algorithmus verwendet werden? Es gilt:

Je mehr Anwender es gibt, desto wahrscheinlicher ist es, dass ein Fehler entdeckt wird.
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• Spezifikation: Wie gut wurde das Verhalten des Algorithmus spezifiziert? Um Fehler

erkennen zu können, ist es vor allem wichtig zu wissen, wie der Algorithmus in welchem

Fall reagieren sollte.

• Zugänglichkeit: Ist der Sourcecode öffentlich zugänglich? Je mehr Personen Zugang zum

Code haben, desto wahrscheinlicher ist es, dass ein Fehler auffällt.

Vorhandene Daten

Es gibt zahllose Beispiele von Datenerhebungen, die fehlerhafte Ergebnisse liefern, zum Beispiel

die Verwendung veralteter Datenbestände.

Wurden in einem Wohnviertel in der Vergangenheit viele Verhaftungen durchgeführt, würde

dies vom Algorithmus in das Modell einbezogen werden. Hat in den vergangenen Jahren

allerdings ein grundlegender Wandel stattgefunden (z. B. durch Abriss und Neubau, der die

Sozialstruktur des Viertels verändert hat), würde das nicht in vollem Umfang berücksichtigt

werden.

Neue Daten

Bei der Eingabe von neuen Daten nach dem Training können Fehler die Aussagekraft des

Modells verzerren. So könnten Daten unvollständig oder fehlerhaft eingegeben werden. Häufig

ist der Mensch hier die Fehlerquelle.

Entscheidungsregeln

Hier stellt sich zunächst die grundlegende Frage, ob überhaupt genügend Datenpunkte vorhan-

den sind, um darin statistisch signifikante Muster zu finden und daraus genügend abstrahierte

Regeln abzuleiten. So wird es vermutlich nie möglich sein, einen Algorithmus zu konstruieren,

der die Eignung einer Kandidatin oder eines Kandidaten für eine Professur auf der Grund-

lage ihres oder seines Lebenslaufs stets korrekt vorhersagen kann. Dafür sind die jeweiligen

Lebensläufe zu unterschiedlich und die jeweils relevanten Journale oder Konferenzen oder

Wirkungsstätten über die Jahre zu volatil, um aussagekräftige Muster zu extrahieren.

Das Erkennen falscher Resultate wird ebenfalls erschwert, wenn das Entscheidungssystem

keine für den Menschen einsichtige Erklärung für sein Ergebnis liefern kann (Erklärbarkeit).

Dann ist es nicht möglich, eine Person mit einer anderen Person in einer ähnlichen Lage zu

vergleichen.
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Interpretation

Die Algorithmen des maschinellen Lernens haben aus den Trainingsdaten gelernt, dass in der

Vergangenheit bestimmte Eigenschaften von Personen mit ihrem Verhalten korrelierten. Zum

Beispiel wird eine Person, die schon mehrfach vorbestraft ist, vermutlich wieder kriminell

werden.

Wenn den Nutzern des Systems nicht klar ist, was eine Vorhersage eigentlich ist, nämlich eine

gruppenbasierte Wahrscheinlichkeit für ein bestimmtes Verhalten, kann es zu massiven Fehlin-

terpretationen kommen. Denn eine „Rückfälligkeitsvorhersage von 60 %“ bedeutet, dass die zu

bewertende Person einer Personengruppe zugeordnet wurde, von denen 60 % wieder kriminell

wurden. Dieser gruppenbasierte Wert wird dann als das individuelles Risiko interpretiert, das

Verhalten von Menschen mit ähnlichen Merkmalsausprägungen wird ihnen womöglich zum

Verhängnis.

Qualität und Fairness

Im Wesentlichen geht es hier um die Fragen, wie viele Personen von einem solchen System

falsch zugeordnet werden (Qualität der Entscheidung) und welche individuellen und gesell-

schaftlichen Kosten die falsche Einordnung mit sich bringt.

Ist ein Unschuldiger im Gefängnis problematischer als ein Krimineller, der nicht gefasst wird?

Da derartige Fragen von entscheidender Bedeutung für die Gesellschaft sind, werden sie in

Abschnitt 6.1.3 ausführlich behandelt.

Aktion

Eine grundlegende Frage ist, wer letztlich die Entscheidung trifft und auf welcher Grundlage

er dies tut. Was geschieht, wenn die Empfehlung des Algorithmus und die angedachte eigene

Entscheidung voneinander abweichen? So könnte ein Richter auch dann der Empfehlung des

Algorithmus zu einer Haftstrafe folgen, wenn sie nicht mit der eigenen Einschätzung des

Sachverhalts übereinstimmt. Denn die negativen Konsequenzen bei einer Fehlentscheidung,

die gegen den Algorithmus getroffen wird, sind ggf. größer als der persönliche Nutzen für den

Richter bei einer richtigen Entscheidung entgegen der Empfehlung des Algorithmus.

Auf der anderen Seite könnten sich Kriminelle an das Entscheidungssystem anpassen. Sie

können Tipps austauschen, mit welchem Verhalten und welchen Antworten sie als wenig rück-

fallgefährdet von dem Algorithmus eingestuft werden und somit ihre persönliche Einstufung
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verbessern.

Feedback

Manche Algorithmen beinhalten Echtzeitfeedback und können so laufend verbessert werden.

Das Feedback kann jedoch auch negative Auswirkungen haben. So kann es zu selbstverstär-

kenden Feedbackschleifen kommen.

Wird aufgrund von Predictive Policing in einem Viertel häufiger Streife gefahren, führt dies

meist zu mehr Festnahmen, weil auch mehr Kleinkriminalität entdeckt wird. Das wiederum

hat zur Folge, dass das System „lernt“, dass hier viele Kriminelle leben, was die Anzahl der

Streifen weiter erhöhen könnte etc. Hier kommt es zu einer scheinbar objektiven Maßnahme,

die die tatsächlich stattfindende Kriminalität jedoch höchst ungleichmäßig verfolgt und daher

den Anschein erweckt, dass eine Teilgruppe viel krimineller ist als der Rest der Bevölkerung.

Auf diese Weise kann der Einsatz eines Entscheidungssystems zu mehr Ungleichheit führen.

Zusammenfassend kann man festhalten, dass die lange Kette der Verantwortlichkeit bei

der Analyse von KI-Systemen im Hinblick auf den menschlichen Einfluss bei der Erstellung

und Verwendung genutzt werden kann. Durch die strukturierte Betrachtung der Einfluss-

und Steuermöglichkeiten und der daraus entstehenden Fehlerpotentiale durch den Menschen

können gesellschaftliche Auswirkungen des Einsatzes sachlich und wertfrei analysiert und

beurteilt werden.

6.1.3 Qualität und Fairness

6.1.3.1 Operationalisierung ethischer Werte

„An KI wird vielfach die Erwartung gestellt, gerechtere oder fairere Entscheidungen zu treffen,

als es der Mensch bisher konnte, jedoch müssen diese Erwartungen gedämpft werden. Was

fair oder gerecht ist, ist in einer weltanschaulichen Perspektive begründet und kann von

einer KI niemals zu voller Zufriedenheit aller entschieden werden“ (Krafft et al., o.J.). Was

als fair und gerecht angesehen ist, muss also in der Gesellschaft diskutiert und kann nicht

abschließend pauschal definiert werden. Die Systeme des Predictive Policing haben beispiels-

weise in den USA gänzlich andere Voraussetzungen im Hinblick auf Datenschutz, rechtliche

Regelungen und gesellschaftliche Akzeptanz. Daher setzen unterschiedliche Gesellschaften
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auch unterschiedliche Anforderungen an diese Systeme. Dabei darf aber die Gesellschaft nicht

nur in ihrer Gesamtheit betrachtet werden, sondern es müssen auch betroffene Teilgruppen

beachtet werden. Was geschieht, wenn es dazu kommt, „dass die gesellschaftliche Teilhabe

der algorithmisch bewerteten Personen behindert wird“ (Zweig, 2019, S. 208)? Oft kommen

Verfahren zum Einsatz, bei denen Menschen ohne ihr Wissen oder zumindest ohne ihre

Beteiligung in einer der in Abbildung 3 dargestellten Art bewertet werden.

(a) Scoring-Verfahren

(b) Klassifikation

(c) Risikobewertung

Abb. 6.3: Algorithmische Entscheidungssysteme, die Menschen bewerten (Zweig & Krafft, 2018, S. 5).
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Beispielsweise weist die Schufa Menschen anhand der bekannten Daten einen Scorewert

(s. Abbildung 6.3 (a)) als Maß für ihre Kreditwürdigkeit zu. Je geringer der Wert ausfällt,

desto „wahrscheinlicher“ ist ein Kreditausfall. Menschen, die ihr Auto versichern, werden in

Schadensfreiheitsklassen (s. Abbildung 6.3 (b)) eingeordnet, was wiederum Auswirkungen

auf den Versicherungsvertrag hat. Eine algorithmische Klassifikation von Personen kann

auch als Grundlage für eine Vorhersage genutzt werden (s. Abbildung 6.3 (c)). Das System

entscheidet, welcher Gruppe von Personen mit bekanntem Ergebnis (0 oder 1) eine neue

Person (s. Abbildung 6.3 (c), Ergebnis ? in der Person links) am ähnlichsten ist. „Wenn sich

[beispielsweise] herausstellt, dass von den meisten der festangestellten Kreditbewerberinnen

mit einem monatlichen Gehalt von mindestens 3.000e ein Kredit in Höhe von 200.000e

zurückgezahlt wird, sieht es für Antragssteller mit denselben Eigenschaften gut aus. Der

Anteil der Personen in dieser Gruppe, die das gesuchte Verhalten aufweisen, wird dann als

Wahrscheinlichkeit interpretiert, dass die Person das Verhalten in der Zukunft zeigen wird.“

(Zweig & Krafft, 2018, S. 4).

All diese Systeme haben gemeinsam, dass die bewerteten Menschen keinen Einfluss auf die

Gestaltung der zugrunde liegenden Systeme haben. Betroffene können ihren Schufa-Eintrag

nicht direkt ändern, ihre Schadensfreiheitsklasse bei der Kfz-Versicherung nicht wechseln und

ihre Risikobewertung nicht anpassen. Somit müssen bei der Entwicklung und Verwendung

von KI-Systemen nicht nur Wertvorstellungen und rechtliche Rahmenbedingungen einer

Gesellschaft beachtet werden, sondern vor allem auch explizit die Gruppen im Fokus stehen,

die direkt von der Nutzung dieser KI-Systeme betroffen sind. Dies alles zu gewährleisten,

wird noch schwieriger, wenn Algorithmen dafür sorgen, dass Verhaltensweisen automatisch

gelernt (s. vorherige Kapitel) werden. Um diese gesellschaftlichen, moralischen und ethischen

Aspekte für die KI umsetzbar und für den Menschen nachvollziehbar zu machen, müssen sie

operationalisiert und fest im System verankert werden.

Aber wie stellt man fest, ob ein KI-System nach diesen Vorgaben richtig arbeitet und das

Ergebnis auch gesellschaftlich akzeptabel ist?

6.1.3.2 Die Frage nach der „guten“ Entscheidung

Um zu erkenne, ob KI-Systeme bereits in der Praxis eingesetzt werden können, muss deren

Qualität bestimmt werden. Dazu wurde in den vorhergehenden Kapiteln bereits die Bedeutung
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von Trainings-, Validierungs- und Testdaten mehrfach beschrieben. Erst wenn die Systeme für

Testdaten zufriedenstellende Ergebnisse liefern, können sie auch für neue Daten eingesetzt

werden. Ein System kann in diesem Sinne der Praxis hinreichend gute Ergebnisse liefern,

dennoch können die Entscheidungen im Hinblick auf andere Kriterien nicht „gut“ sein.

Fraglich ist dabei, ob „dieselbe Qualität auch für durch das Recht geschützte Teilgruppen

gilt, ob also die Entscheidungsqualität nicht zwischen Teilgruppen diskriminiert“ (Zweig &

Krafft, 2018, S. 6). Diskriminierung bedeutet dabei die Benachteiligung von Gruppen oder

Einzelpersonen (s. Abschnitt 6.1.4), die gleiche Merkmalsausprägungen aufweisen. Im Folgen-

den soll dies näher beleuchtet werden: Ein einfaches Beispiel zum Einstieg in diese Thematik

liefert der bekannte Konflikt zwischen „Equality“ (Gleichheit) und „Equity“ (Gerechtigkeit)

(s. Abbildung 6.4).

Abb. 6.4: Visualisierung der Begriffe „Equality“ und „Equity“.

Im linken Bild bekommen alle Personen die gleiche Hilfe, nämlich ein gleich großes Podest.

Rechts erhalten die Personen jeweils individuell die Hilfe, die sie benötigen, um das Ziel zu

erreichen. Aber was ist fair? Ist es fair, dass Eltern in Deutschland unabhängig von Einkommen,

finanzieller Konstitution und anderen Lebensumständen den gleichen Betrag an Kindergeld für

ihren Nachwuchs erhalten (s. Abbildung 6.4, Equality)? Oder ist es fair, dass im System der

sozialen Sicherung (z. B. Sozialhilfe) jeder so viel bekommt, dass sein oder ihr Leben bestritten

werden kann (s. Abbildung 6.4, Equity)? Natürlich ist diese Diskussion schon vielfach geführt,

aber nie abschließend geklärt worden. Das kann sie auch nicht, da die Entscheidung, ob eine

Regelung fair ist, immer von der vorliegenden Maßnahme im jeweiligen gesellschaftlichen
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Kontext abhängt. Man kann für eine Maßnahme, beispielsweise das Kindergeld, nur disku-

tieren, ob als Maß Equity oder Equality angelegt werden soll. Beim Kindergeld hat man

sich augenscheinlich dafür entschieden, den Eltern gleich viel Unterstützung zukommen zu

lassen, ohne auf die soziale und finanzielle Ausstattung der Familie zu achten. Würde man

stattdessen das Maß Equity verwenden, würde die Beurteilung dieser Regelung allerdings

anders ausfallen.

Für die Akzeptanz eines KI-Systems ist es von hoher Bedeutung, dass seine Entscheidungen als

fair angesehen werden. Nur wenn der Algorithmus Ergebnisse liefert, die von der Gesellschaft

als „fair“ empfunden werden, sollte das KI-System in der Praxis eingesetzt werden. Derartige

Systeme treffen allerdings nicht für alle Daten stets eine korrekte Entscheidung, sondern geben

für neue Eingaben oft nur Wahrscheinlichkeiten für erwartbare Ergebnisse an. Beispielsweise

liefert das Fallmanagement- und Entscheidungshilfesystem der US-Justiz COMPAS (Correctio-

nal Offender Management Profiling for Alternative Sanctions) eine Wahrscheinlichkeit, mit der

ein Angeklagter rückfällig wird. Dabei teilt die Software die Personen zuerst in Risikoklassen

ein und nimmt darauf aufbauend die Prognose über ihre weitere Entwicklung vor.

Was dies für das Individuum bedeuten kann, wird in einem Experiment deutlich (vgl. Zweig,

2019, S. 163 ff). Ähnlich wie bei einem Perzeptron wird dabei eine Trennlinie gesucht, die gela-

belte Datenpunkte in zwei Gruppen (Kriminelle und Unschuldige) aufteilt. In der Abbildung

6.5 sind Kriminelle und unschuldige Bürger anhand ihrer Ausprägung von zwei abstrakten

Kriterien, Kriterium 1 und 2, in einem Koordinatensystem abgebildet.

Abb. 6.5: Ausgangslage des Experiments (Zweig, 2019, S. 166).

Nun soll eine Trennline definiert werden, die Kriminelle und unschuldige Bürger „möglichst

gut“ in zwei Gruppen teilt. „Möglichst gut“ deshalb, weil es keine Möglichkeit gibt, die beiden
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Gruppen linear zu separieren. Grundsätzlich können bei der Trennung zwei extreme Ansätze

verfolgt werden:

1. Die Trennlinie wird so gezogen, dass kein Unschuldiger als kriminell eingestuft wird

(s. Abbildung 6.6).

Abb. 6.6: Kein Unschuldiger wird als kriminell eingestuft (Zweig, 2019, S. 166).

Bei diesem Ansatz ist es gesellschaftlich akzeptiert, dass nicht

alle Kriminelle (s. Abbildung 6.6, rote Punkte unterhalb der

Linie) gefasst werden. Ziel ist es, dass kein unschuldiger Bür-

ger zu Unrecht verurteilt wird (s. Abbildung 6.6, keine grünen

Punkte oberhalb der Trennlinie). Diesem Ansatz folgte schon

der englische Jurist William Blackstone 1760: „It´s better

that ten guilty persons escape than that one innocent suffer“.

Aus Sicht der unschuldigen Bürger scheint diese Handlungs-

maxime fair zu sein, da niemand zu Unrecht belangt wird.

Abb. 6.7: William

Blackstone.

Der Schutz der Gesellschaft wird dabei dem Schutz der Individuen untergeordnet. Dass

Kriminelle fälschlicherweise in Freiheit bleiben, mag bei leichteren Vergehen akzeptabel

sein, wird aber bei schweren Straftaten wie Mord wohl eher auf wenig Akzeptanz in der

Gesellschaft treffen.
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2. Die Trennline wird so gezogen, dass alle Kriminellen verurteilt werden (s. Abbildung 6.8).

Abb. 6.8: Kein Krimineller wird als unschuldig eingestuft (Zweig, 2019, S. 166).

Dadurch werden alle Kriminellen sicher als kriminell eingestuft (s. Abbildung 6.8, alle

roten Punkte über der Trennline), gleichzeitig aber auch einige Unschuldige (s. Abbil-

dung 6.8, grüne Punkte über der Trennlinie). Diese Konfiguration hat zum Ziel, alle

Kriminellen zu fassen, akzeptiert aber auch, dass Unschuldige zu Unrecht kriminalisiert

werden. Ein Vertreter dieses Ansatzes, Dick Cheney, ehemaliger Vizepräsident der USA,

brachte dies am 14.12.2014 in einem Interview so zum Ausdruck:

„I am more concerned with bad guys who got out and released

than I am with a few that, in fact, were innocent“. Betont

werden muss dabei, dass er sich vor allem darauf bezog, dass

terroristische Anschläge wie am 11. September 2001 zukünf-

tig verhindert werden sollten. Bei Straftaten mit derartig

weitreichenden Konsequenzen für die Bevölkerung scheint es

schwer, ihm zu widersprechen. Aufgrund des Risikos wird

hier der Schutz des Individuum dem Schutz der Gesellschaft

untergeordnet.
Abb. 6.9: Dick Che-

ney.

Eine pauschale Anwendung dieses Ansatzes würde allerdings nicht von allen Bürgerinnen

und Bürgern getragen.

Obwohl es noch andere Möglichkeiten gibt, diese Trennlinie ggf. „besser“ zu ziehen

(z. B. Fehler minimieren), zeigen diese beiden Extreme doch deutlich das Problem der

Fairness von KI-Systemen auf. Die für die Erstellung dieser Systeme verantwortlichen

Personen müssen sich für eine Positionierung der Trennlinie entscheiden und sich dabei
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der Bedeutung für alle Gruppen bewusst sein. Schon am Beispiel der Pilze (s. Abschnitt

3.1.4.2) wurde deutlich, dass auf keinen Fall ein giftiger Pilz als essbar klassifiziert werden

darf, wohingegen bei einer großen Auswahl an Bewerbern (s. Kapitel 3.3.1) auch ein

qualifizierter Bewerber oder eine qualifizierte Bewerberin fälschlicherweise ausgemustert

werden könnte. Zusätzlich muss das Qualitätsmaß aber auch den Benutzerinnen und

Benutzern des KI-Systems bekannt sein. Die berechnete Rückfälligkeitswahrscheinlich-

keit von COMPAS kann von Richtern im Prozess der Urteilsfindung nur zielführend

eingesetzt werden, wenn sie die zugrunde liegenden Annahmen und Arbeitsweisen der

Klassifizierung kennen. Daher ist die Beurteilung der Fairness viel komplexer und weniger

eindeutig als die reine Qualitätsmessung des KI-Systems.

6.1.4 Diskriminierung

Diskriminierung in KI-Systemen kann nach Zweig (2019) in folgende Arten unterteilt werden.

6.1.4.1 Diskriminierung in den Daten

Bereits die vorliegenden Trainingsdaten können zu Diskriminierung führen. Amazon stellte

beispielsweise bereits 2015 fest, dass sein System zur Klassifizierung von Bewerberinnen

und Bewerbern für Software-Entwicklung und andere technische Berufe nicht gender-gerecht

arbeitete3. Das System wurde mit Bewerbungen der letzten zehn Jahre trainiert, welche die

überdurchschnittliche Anzahl an Männern in der IT-Branche widerspiegelten. Es wurden

deutlich mehr männliche Bewerber als Bewerberinnen eingestellt. Das System lernte anhand

dieser Daten, dass Bewerbungen von Männern denen von Frauen vorgezogen werden sollten.

Obwohl das KI-System die Angabe des Geschlechts explizit nicht beachtete, wurden Frauen

diskriminiert, indem der Algorithmus auch Informationen heranzog, die Auskunft über das

Geschlecht, beispielsweise „Kapitän der Frauen-Schachmannschaft“ gaben. Diese Bewerbungen

wurden dann schlechter bewertet.

3vgl. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
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6.1.4.2 Diskriminierung durch fehlende Daten

Auch das Fehlen von Daten, die das KI-System zum Training seines Modells benötigt, kann

zu Diskriminierung führen. Bilderkennungssysteme benötigen beispielsweise bei der Erken-

nung von Melanomen (schwarzer Hautkrebs ähnlich einem Leberfleck) eine repräsentative

Datenbasis, um zuverlässige Ergebnisse liefern zu können. Nur wenn das KI-System mit vielen

unterschiedlichen Bildern von Körperteilen und Hautfarben trainiert wurde, kann es in der

Praxis eingesetzt werden. Werden einzelne Personengruppen bei der Datenerhebung nicht

berücksichtigt, können für diese später auch keine zuverlässigen Vorhersagen getroffen werden.

Diese Diskriminierung kann gerade im Gesundheitsbereich besonders schwerwiegende Folgen

haben.

Auch beim Training von KI-Systemen mit Spracherkennung müssen im Vorfeld Personen-

gruppen mit Akzenten, Dialekten und Sprachbehinderungen beachtet werden, um deren

Möglichkeit der Nutzung des Systems nicht bereits im Vorfeld auszuschließen. Besonders

wichtig ist dieses Anwendungsgebiet, da den Sprachinterfaces in den nächsten Jahren eine

stark ansteigende Bedeutung zugesprochen wird, sogar mit dem Potential, die gängige Eingabe

durch Tastatur und Maus abzulösen (vgl. Zweig (2019), S. 214). Ein humoristisches Beispiel

dieser Art der Diskriminierung zeigt der Sketch, in dem zwei Schotten Probleme mit der

Sprachsteuerungssoftware eines amerikanischen Lifts haben4.

6.1.4.3 Diskriminierung durch Weglassen sensitiver Informationen

Benachteiligung kann auch entstehen, wenn dem KI-System sensitive Eigenschaften der Trai-

ningsdaten vorenthalten werden, diese aber ursächlich für unterschiedliches Verhalten sind.

Beispielsweise kann im Experiment aus Abschnitt 6.1.3.2 ein für Frauen und Männer (s. Ab-

bildung 6.10, Geschlechtszeichen bei den Punkten) getrenntes System eine zufriedenstellende

Vorhersage treffen. Dabei stellt die orange Linie (s. Abbildung 6.10, orange Linie) die optimale

Trennlinie für Männer und die blaue Linie (s. Abbildung 6.10, blaue Linie) die optimale

Trennlinie für Frauen dar. Würde man hier für Frauen und Männer getrennt jeweils eine eigene

Trennlinie bestimmen, würden keine unschuldigen Personen verurteilt und keine schuldigen

4https://www.youtube.com/watch?v=HbDnxzrbxn4

https://www.youtube.com/watch?v=HbDnxzrbxn4
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Personen freigesprochen werden. Das Ergebnis wäre daher für die vorliegenden Daten optimal.

Abbildung 6.10: Experiment mit drei Trennlinien unter Berücksichtigung des Merkmals Geschlecht

(Zweig, 2019, S. 217).

Wird aber das Geschlecht bei der Bestimmung der Trennlinie nicht beachtet und nur eine

einzige Trennlinie für alle Personen bestimmt, ist das Gesamtergebnis deutlich schlechter. Die

in Abbildung 6.10 eingetragene schwarze Linie stellt ein bestes Ergebnis für alle Personen

unabhängig von ihrem Geschlecht dar, das aber vier Personen falsch klassifiziert. In diesem

Fall sind die zwei zu Unrecht verurteilten Personen männlich (s. Abbildung 6.10, zwei grüne

Punkte über der schwarzen Linie) und die beiden nicht verurteilten Kriminellen weiblich

(s. Abbildung 6.10, zwei rote Punkte unter der schwarzen Linie). Das Weglassen des Geschlechts

wirkt daher diskriminierend.

6.1.4.4 Diskriminierung durch dynamisches Weiterleiten

Eine weitere Form der Diskriminierung kann im Zuge des Lernens der KI-Systeme entstehen.

2016 wurde der Chatbot Tay in die harte Realität des Internets entlassen5.

Auf Twitter sollte er mit Menschen interagieren und dadurch menschliche Kommunikation

und Verhaltensweisen lernen. Dabei konnte er auch selbstständig in Form von Likes, Tweets

und Re-Tweets agieren und reagieren. Nachdem er freundlich mit „Hellooooooo World!!!“
5https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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startete, radikalisierte er sich innerhalb kürzester Zeit. Neben beleidigenden, rassistischen

und sexistischen Aussagen gab Tay auch Verschwörungstheorien weiter. So machte er, bevor

er abgeschaltet wurde, US-Präsident George W. Bush für die Terroranschläge am 11. Sep-

tember 2001 verantwortlich und befürwortete die Taten von Adolf Hitler. Eine erschreckende

aber erklärbare Entwicklung. Nach dem Motto „garbage in, garbage out“ entstanden diese

Ausbrüche durch das Lernen derartiger Aussagen von Personengruppen, die es gezielt auf

diesen Chatbot abgesehen hatten. Durch Filterblasen und Verstärkereffekte in den sozialen

Medien wurden diese Einflüsse weiter verstärkt. Ein KI-System kann auf diese Weise auch

Diskriminierung lernen.

Angesichts dessen stellt sich die Frage, ob die Radikalisierung von Tay hätte verhindert

werden können. Mithilfe von Blacklist- und Filteroptionen könnten Themen, Aussagen oder

sogar Personen im Lernprozess gezielt vermieden werden. Aber auch diese Filtermöglichkeiten

hätten im vorliegenden Fall von Personen mit böswilliger Absicht umgangen werden können.

Zusätzlich bietet eine derartige Zensur ebenfalls Diskriminierungspotential. Wer entscheidet,

was der Chatbot lernen darf und von wem? Eine Ungleichbehandlung von Teilgruppen der

Gesellschaft erscheint hier durchaus möglich.

6.1.5 Rechtliche Fragen am Beispiel der Haftung

Neben technischen und gesellschaftlichen Fragen sind KI-Systeme auch rechtlich reglementiert.

Dies kann anschaulich am Beispiel des autonomen Fahrens aufgezeigt werden. Aktuell ergibt

sich für den Fahrzeughalter durch die Gefährdungshaftung (§ 7 Straßenverkehrsgesetz) eine

verschärfte Haftung. Diese Haftung wird über die Pflichtversicherung (§ 1 Gesetz über die

Pflichtversicherung für Kraftfahrzeughalter) abgesichert, da für jedes am Verkehr teilnehmende

Kraftfahrzeug eine Haftpflichtversicherung abgeschlossen werden muss. Dies führt dazu, dass

Schäden beim Unfallgegner, die durch diese Fahrzeuge entstehen, in jedem Fall reguliert

werden. Dennoch ist der Halter verantwortlich für sein Fahrzeug. Das beinhaltet auch, wem er

sein Fahrzeug anvertraut, dass er sich um den Zustand kümmert und als Fahrer natürlich die

Regeln einhält. Das setzt aber auch voraus, dass er Einfluss auf Fahrer, Fahrverhalten und

Zustand des Fahrzeuges hat. Gerhard Wagner von der Humboldt-Universität Berlin sieht hier

einen Paradigmenwechsel: „Gegenwärtig fahren Menschen das Auto, aber in Zukunft fährt

der Hersteller das Auto und mit dieser Verlagerung der Kontrolle des Fahrzeugs müsste sich
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auch die Haftung hin zum Hersteller verlagern“6. Warum soll ein Halter eines Fahrzeuges

haftbar gemacht werden, wenn dieses doch „autonom“, also selbstständig und unabhängig

fährt? Diese Überlegung würde zu einer Produkthaftung führen, bei der ein Hersteller für die

Schäden seiner Produkte einstehen muss. Wenn der „Fahrzeugführer“ nicht mehr selbst fährt,

sollte also der Fahrzeughersteller für Unfälle seiner Fahrzeuge Schadensersatz leisten. Ein

Unfallgegner müsste sich daher zur Regulierung seines Schadens an die Fahrzeugproduzenten

wenden. Viele Verbraucherschützer sehen hier Schwierigkeiten bei der Durchsetzung von

Ansprüchen von Privatpersonen gegen große Konzerne. Sie sehen daher die Notwendigkeit,

die Halterhaftung nicht zu ändern. „Für Geschädigte sei es im Zweifel einfacher, sich direkt

an die Pflichtversicherung eines Fahrzeughalters zu wenden, als mit einem Autohersteller

in einen Rechtsstreit über fehlerhafte KI-Programmierung zu geraten“6. Nichtsdestotrotz

müssen rechtliche Regelungen geschaffen werden, die klären, in welchem Rahmen der Versiche-

rungsanbieter Regressansprüche bei den Herstellern der Fahrzeuge im Falle von Fehlern, z. B.

durch die Software, geltend machen kann. Aber auch das ist umsetzbar: Schon heute können

beispielsweise Hersteller bei Unfällen, die auf Produktionsfehler zurückzuführen sind, haftbar

gemacht werden. Ob das bei autonomen Fahrzeugen auch so sein wird, bleibt abzuwarten.

Dieser kurze Exkurs in die rechtlichen Rahmenbedingungen der Haftung im Bereich des

autonomen Fahrens soll zeigen, welche rechtlich relevanten Fragen geklärt werden müssen,

um bei der Verwendung von KI-Systemen ein friedliches Zusammenleben in der Gesellschaft

zu ermöglichen. Sind entsprechende Herausforderungen erfüllt, können die vielen Vorteile

von autonomen Fahrzeugen genutzt und die Sorgen vieler Menschen durch klare Regelungen

gemildert werden.

6.1.6 Einsatzmöglichkeiten und -beschränkungen

In den vorhergehenden Kapiteln wurde deutlich, welchen Einfluss KI-Systeme auf die Gesell-

schaft und das Individuum haben können. Daher stellt sich die Frage, in welchen Bereichen des

Lebens derartige Software eingesetzt werden soll und welche Voraussetzungen sie dabei erfüllen

muss. Zweig (2019) hat dazu eine Risikomatrix mit den Dimensionen Gesamtschaden und

Anzahl der Anbieter bzw. Komplexität der Wechselmöglichkeit erstellt (s. Abbildung 6.11), in

6https://www.zdf.de/nachrichten/digitales/ki-strassenverkehr-haftung-autonomes-fahren-

100.html

https://www.zdf.de/nachrichten/digitales/ki-strassenverkehr-haftung-autonomes-fahren-100.html
https://www.zdf.de/nachrichten/digitales/ki-strassenverkehr-haftung-autonomes-fahren-100.html
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die diese Systeme eingeordnet werden können.

Abb. 6.11: Risikomatrix (Zweig, 2019, S. 242).

Zum einen ist wichtig, wie hoch ein möglicher Schaden bei einer Fehlbeurteilung durch das

KI-System für die Gesellschaft ausfallen kann. Die bereits angesprochene Terroristenidentifi-

zierung (s. Abbildung 6.11, rechts unten) kann bei falscher Klassifikation natürlich deutlich

stärkere Auswirkungen haben, als einem Kunden eine unpassende Kaufempfehlung zu schicken

(s. Abbildung 6.11, links oben). Dabei wird in dieser Darstellung nur die übergeordnete

gesamtgesellschaftliche Ebene betrachtet und nicht der individuelle Schaden für einzelne

Personen. Dieser Aspekt wurde bereits in Abschnitt 6.1.3.2 thematisiert.

Die zweite Dimension beschreibt die Möglichkeit, den Anbieter einer bestimmten Leistung

zu wechseln. Dies kann beispielsweise durch fehlende Alternativen, die durch Patente und

Musterschutz entstehen können, oder durch große Marktmacht, die durch sich selbstverstär-

kende Konzentrationsprozesse bei sozialen Netzwerken und Online-Marktplätzen entstehen,

erschwert werden.

Die Lage der KI-Systeme in dieser Risikomatrix erlaubt eine Einordnung in fünf Risikoklassen

(s. Abbildung 6.12), „die dann bestimmen, welche Transparenz- und Nachvollziehbarkeitsan-

forderungen gestellt werden“ (Zweig, 2019, S. 242).

Die Klasse bestimmt dabei, unter welchen Voraussetzungen oder ob überhaupt Systeme mit

Künstlicher Intelligenz als Entscheidungssysteme eingesetzt werden sollen:
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Abb. 6.12: Risikoklassen (Zweig, 2019, S. 244).

Klasse 0: Das Schadenspotential für die Gesellschaft ist bei diesen Systemen so gering, dass

keine technische Regulierung notwendig ist. Bewertungs- oder Empfehlungssysteme in

Online-Shops sind Beispiele für diese Art der Anwendungen. Sollte bei einer nachträgli-

chen Analyse Diskriminierung einzelner Gruppen auftauchen, wird das System in eine

höhere Klasse mit gesteigerten Anforderungen eingeordnet.

Klasse 1: Systeme in dieser Klasse müssen ständig überwacht werden, da ihr Schadenspotential

nicht trivial ist. Personalisierte Preise können beispielsweise marktverzerrend wirken

und damit einen negativen Effekt auf die gesamte Gesellschaft haben. Personalisierte

Werbung kann die öffentliche Meinung und Wahrnehmung beeinflussen und ist daher

auch mit potentiellen Gefahren verbunden. Um dem entgegenzuwirken, sollten der

Gesellschaft bei diesen Systemen zum einen die verwendeten Methoden des maschinellen

Lernens sowie das zugrunde liegende Qualitätsmaß bekannt sein. Zum anderen muss

geklärt werden, welche Konsequenzen die Ergebnisse der Systeme für die Gesellschaft

haben und ob Widerspruchs- und Ausweichmöglichkeiten gegeben sind.

Klasse 2: Zusätzlich zu den Anforderungen aus Klasse 1 müssen bei diesen Anwendungen auch

Informationen über die zugrunde liegenden Daten bekannt sein, um ein transparentes

Bild über das Ergebnis des KI-Systems zu erlangen. Dazu gehört auch die Möglichkeit,

die Qualität der Ergebnisse selbstständig überprüfen zu können. Bei der Bestimmung
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der Kreditwürdigkeit einer Person sollte diese beispielsweise erfahren können, auf welche

Daten die sie betreffende Vorhersage beruht.

Klasse 3: Hierin befinden sich KI-Systeme, deren Schadenspotential als sehr hoch eingestuft

wird. Dies macht einen Einblick in deren Funktionsweise unbedingt notwendig, um

zu erkennen, welche Eigenschaften zu welchen Ergebnissen führen. Systeme in dieser

Kategorie müssen mit Verfahren des maschinellen Lernens trainiert werden, „die eine

Einsicht in die gefundenen Entscheidungsregeln erlauben“ (Zweig, 2019, S. 243). Dies

stellen nicht alle Verfahren des maschinellen Lernens sicher. Deren Ergebnisse können

jedoch schlechter sein als ihre Black-Box-Alternativen. Als zusätzliche Einschränkung

sollte bei diesen Systemen die Datenbasis auf vorliegende Diskriminierung überprüft

werden können. Uploadfilter und News-Feed-Algorithmen haben einen direkten Einfluss

auf die politische Meinungsbildung in einem Land und sollten daher transparent und

nachvollziehbar agieren. Auch bei Verfahren, die Einfluss auf den Erfolg einer Bewerbung

haben (s. auch Abschnitt 3.3.1), sollten Transparenz und Nachvollziehbarkeit für den

Bewerbenden, die Mitarbeitenden und die Personalabteilung gewährleistet sein.

Klasse 4: In diesen Bereich fallen KI-Systeme, deren mögliches Schadenspotential als zu groß

erachtet wird, um ihren Einsatz in Abwägung mit dem Nutzen rechtfertigen zu können.

Tödliche autonome Waffen (lethal autonomous weapons) töten selbstständig Personen,

die zuvor von diesem System identifiziert worden sind. Eine „hinreichende Sicherheit“,

ob es die „richtige“ Person ist oder die vorliegenden Informationen korrekt sind, wird es

allerdings nicht geben. Ein Einsatz dieser Maschinen ist daher grundsätzlich abzulehnen.

Diese Kategorisierung nach Zweig (2019) lässt Raum zur Diskussion über die Klassifizierung

einzelner KI-Systeme sowie über die gestellten Anforderungen an KI-Systeme unterschiedlicher

Klassen. Es bietet aber eine gute Grundlage, um diese KI-Systeme miteinander zu vergleichen,

Auswirkungen auf die Gesellschaft zu bewerten und die Fortentwicklung des rechtlichen

Rahmens zu diskutieren.
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6.2 Didaktische Hinweise / Bezug zum Lehrplan

6.2.1 Einordnung in den Lehrplan

Im LehrplanPLUS Informatik sowie spät beginnende Informatik findet sich in Jahrgangsstufe

11 folgende Kompetenzerwartung:

Die Schülerinnen und Schüler nehmen zu ausgewählten aktuellen Einsatzmöglichkeiten

der Künstlichen Intelligenz Stellung und bewerten Chancen und Risiken für Individuum

und Gesellschaft.

In diesem Rahmen sollen die Schülerinnen und Schüler KI-Systeme, die aktuell eingesetzt

oder deren Einsatz geplant ist, analysieren. Neben den technischen Details dieser Systeme,

welche die Schülerinnen und Schüler im Verlauf dieser Sequenz bereits kennengelernt haben,

stehen nun die Auswirkungen auf die gesamte Gesellschaft, Teilgruppen oder Individuen im

Vordergrund. Um eine Analyse zu ermöglichen, müssen die Schülerinnen und Schüler zuerst die

Funktionsweise von KI-Systemen kennenlernen, die verwendeten Daten überblicken und das

verwendete Lernverfahren verstehen. Dafür greifen sie auf die in dieser Sequenz erworbenen

Kompetenzen zurück.

Darauf aufbauend können sie ethische, rechtliche und gesellschaftliche Implikationen ableiten.

Eine reine Auflistung der Vor- und Nachteile dieser Systeme zu generieren, ist allerdings nicht

das Ziel. Vielmehr sollen die Chancen und Risiken verwendet werden, um „abzustecken“, was

möglich, umsetzbar und gesellschaftlich erwünscht ist. So soll eine differenzierte mehrdimen-

sionale Bewertung der Zusammenhänge erfolgen, die am Ende nicht ein „Einsatz ja“ oder

„Einsatz nein“ bestimmt, sondern Voraussetzungen und Regeln zur erfolgreichen Verwendung

dieser Systeme benennt. Dabei sind die Chancen in der Regel schnell bestimmt. Die Risiken

dagegen bedürfen einer genaueren Betrachtung. Sie sollen nicht per se als Ausschlusskriterien

dieser Systeme dienen, sondern eine Diskussionsgrundlage für die notwendigen Voraussetzun-

gen für den Einsatz im Hinblick auf mögliches Schadenspotential darstellen.

Diese Diskussion kann nur im Kontext des geltenden Rechtssystems sowie der gesellschaftlichen

Wertvorstellung unter Verwendung von aktuellen Beispielen erfolgen. Der Operator „bewerten“
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zielt dabei (vgl. EPA Informatik7) auf die Übertragung vielfältiger Erfahrungen bei der

Bearbeitung von Problemen aus verschiedenen Anwendungsfeldern auf die Lösung ähnlicher

Fragestellungen ab. Im Zuge dessen müssen die Schülerinnen und Schüler mit Beispielen

aus der Realität arbeiten, um die damit erworbenen Erkenntnisse und Fähigkeiten bei der

Bewertung in andere Kontexte transferieren zu können. Was sie dazu brauchen, sind allerdings

Strukturen, die ihnen eine sachliche, geordnete und multiperspektivische Betrachtung der

Problemlage erlauben. Die Schülerinnen und Schüler sollen lernen, wie sie eine Analyse von

KI-Systemen im Hinblick auf die Auswirkungen auf Individuum und Gesellschaft fundiert

durchführen können.

Dabei steht nicht die Behandlung theoretischer Modelle (z. B. die lange Kette der Verant-

wortlichkeiten in Abschnitt 6.1.3.2) im Vordergrund. Vielmehr sollen den Schülerinnen und

Schülern damit Diskussionsansätze, neuralgische Punkte bei der Entwicklung und Verwendung

von KI-Systemen sowie unterschiedliche Betrachtungsperspektiven aufgezeigt werden.

Sind die Chancen gesammelt und die Risiken im Hinblick auf das Schadenspotential abgesteckt,

kann zu einem vorgegebenen Einsatz eines konkreten KI-Systems Stellung genommen werden.

Diese Fähigkeit ist mithilfe der Strukturen, Perspektiven und Erfahrungen auf andere Proble-

me, neue Systeme oder Änderungen in den Voraussetzungen transferfähig. Dies ist besonders

wichtig, um sich von Diskussionen über „die Künstliche Intelligenz“, die nur oberflächlich

geführt werden oder Ängste schüren wollen, abzuheben.

6.2.2 Durchführung

Insgesamt werden für diesen Themenbereich ca. zwei Stunden vorgeschlagen. Um die Schü-

lerinnen und Schüler von den zuvor bearbeiteten technischen Aspekten abzuholen und zu

den Folgen dieser Systeme überzuleiten, kann ein Beispiel aus den vorhergehenden Stunden

aufgegriffen werden. Es bieten sich dabei besonders Systeme an, die in irgendeiner Form

Entscheidungen treffen müssen, wie beispielsweise Systeme der Klassifizierung von Personen.

Eine Umsetzung dieses Themenbereichs kann dabei anhand eines Szenarios (Justizszenario

in Abschnitt 6.2.2.1) oder der thementeiligen Bearbeitung mehrerer Szenarien (Beispiele

Abschnitt 6.2.2.2) durchgeführt werden. In beiden Fällen sollte den Schülerinnen und Schüler

7https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-

Informatik.pdf

https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf
https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf
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mithilfe der langen Kette der Verantwortlichkeiten (s. Abschnitt 6.1.3.2), des „Trennlinien-

Experiments“ (s. Abschnitt 6.1.3.2), der Arten möglicher Diskriminierung (s. Abschnitt 6.1.4)

oder der Einsatzmöglichkeiten und -beschränkungen (s. Abschnitt 6.1.6) Ansatzpunkte zur

weiteren Auseinandersetzung vorgestellt werden.

6.2.2.1 Beispiel 1: Szenario Justizsysteme

Zum Einstieg in diese Thematik bietet sich der Ausschnitt aus dem Film Minority Report8

an, der die scheinbare Utopie einer Strafverfolgung vor der eigentlichen Tat und damit deren

Verhinderung zeigt. Dieser Clip zeigt eine Welt frei von Verbrechen, die man sich kaum

vorstellen kann. Dass sich diese Welt im Verlauf des Filmes eher in eine Dystopie verwandelt,

sei an dieser Stelle dahingestellt. Neben den Chancen, die ein System bietet, das Kriminalität

schon im Vorfeld nicht geschehen lässt, erkennen die Schülerinnen und Schüler bereits an

dieser Stelle mögliche Probleme.

Das Predictive Policing System SKALA in Nordrhein-Westfalen (NRW) (s. Abschnitt 6.1.2.1)

folgt in Zügen dem Ansatz des gezeigten Filmausschnitts. Informationen zu diesem System

findet man auf der Homepage der Polizei NRW9. Nachdem sich die Schülerinnen und Schüler

über die Umsetzung, Voraussetzungen und Ziele dieses Systems informiert haben, können

ihnen von der Lehrkraft mit der langen Kette der Verantwortlichkeiten (s. Abschnitt 6.1.3.2),

das „Trennlinien-Experiment“, die Arten möglicher Diskriminierung (s. Abschnitt 6.1.4) und

der Einsatzmöglichkeiten und -beschränkungen (s. Abschnitt 6.1.6) Ansatzpunkte für eine

vertiefte Auseinandersetzung mit diesen Systemen bereitgestellt werden.

Eine Stellungnahme zu diesem Thema könnte anschließend in Form der Methode „Talkshow“

umgesetzt werden: Dazu bearbeiten die Schülerinnen und Schüler die Materialien thementeilig

in Gruppen. Jede Gruppe erhält eine Rolle und entwickelt eine Argumentationsstruktur, welche

die Chancen aber auch notwendige Voraussetzungen und Bedingungen für die Einführung eines

Systems des Predictive Policing aus ihrer Sicht beinhaltet. Dabei kann unter anderem zwischen

den Rollen Datenschützer, unschuldiger Bürger, Strafverfolgungsbehörde und Vertreter der

Gesamtgesellschaft unterschieden werden. Eine Gruppe stellt den Talkshow-Moderator, der

sich ebenso in die Materie einarbeiten und eine Fragenstruktur zur späteren Moderation

8https://www.youtube.com/watch?v=oQdDLfD3kls
9https://polizei.nrw/skala

https://www.youtube.com/watch?v=oQdDLfD3kls
https://polizei.nrw/skala
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entwickeln muss. Anschließend sendet jede Gruppe einen Vertreter oder eine Vertreterin in die

Talkshow-Runde. Hier wird der Einsatz dieser Systeme unter Verwendung der vorbereiteten

Argumente diskutiert. Dabei ist zu beachten, dass geforderte Einschränkungen einer Gruppe

den Chancen einer anderen Gruppe entgegenstehen können. Dies stellt die Ausgangslage für

eine multiperspektivische und dynamische Diskussion dar. Optional kann ein Gesamtergebnis,

das aus einem Katalog aus Voraussetzungen besteht, erstellt werden.

Material z. B.:

Polizei NRW: Projektbeschreibung

SKALA
https://polizei.nrw/skala

Polizei NRW: Abschlussbericht mit Da-

tenschutzinformationen: Ausführlicher

Bericht oder Kurzfassung

https://www.sueddeutsche.de/panorama/

polizei-duesseldorf-nrw-polizei-

verteidigt-umstrittene-palantir-

software-dpa.urn-newsml-dpa-com-

20090101-210503-99-449227

Urteil zur Einschränkung der Software

Palantir 2023

https://www.spiegel.de/netzwelt/

netzpolitik/palantir-programme-

bundesverfassungsgericht-schraenkt-

einsatz-von-polizei-software-ein-a-

6a707d74-fea1-484b-a187-013f827b09c0

6.2.2.2 Beispiel 2: Weitere Szenarien

Im Folgenden finden sich Materialien für Szenarien, bei denen Chancen und Risiken von

KI-Systemen deutlich werden:

Sprach- und Texterkennung:

Chancen: z. B.

• ChatGPT (https://openai.com/blog/chatgpt)

• Automatische Terminvereinbarung (https://www.youtube.com/watch?v=kMu_cO-

P6u0)

https://polizei.nrw/skala
https://www.sueddeutsche.de/panorama/polizei-duesseldorf-nrw-polizei-verteidigt-umstrittene-palantir-software-dpa.urn-newsml-dpa-com-20090101-210503-99-449227
https://www.sueddeutsche.de/panorama/polizei-duesseldorf-nrw-polizei-verteidigt-umstrittene-palantir-software-dpa.urn-newsml-dpa-com-20090101-210503-99-449227
https://www.sueddeutsche.de/panorama/polizei-duesseldorf-nrw-polizei-verteidigt-umstrittene-palantir-software-dpa.urn-newsml-dpa-com-20090101-210503-99-449227
https://www.sueddeutsche.de/panorama/polizei-duesseldorf-nrw-polizei-verteidigt-umstrittene-palantir-software-dpa.urn-newsml-dpa-com-20090101-210503-99-449227
https://www.sueddeutsche.de/panorama/polizei-duesseldorf-nrw-polizei-verteidigt-umstrittene-palantir-software-dpa.urn-newsml-dpa-com-20090101-210503-99-449227
https://www.spiegel.de/netzwelt/netzpolitik/palantir-programme-bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://www.spiegel.de/netzwelt/netzpolitik/palantir-programme-bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://www.spiegel.de/netzwelt/netzpolitik/palantir-programme-bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://www.spiegel.de/netzwelt/netzpolitik/palantir-programme-bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://www.spiegel.de/netzwelt/netzpolitik/palantir-programme-bundesverfassungsgericht-schraenkt-einsatz-von-polizei-software-ein-a-6a707d74-fea1-484b-a187-013f827b09c0
https://openai.com/blog/chatgpt
https://www.youtube.com/watch?v=kMu_cO-P6u0
https://www.youtube.com/watch?v=kMu_cO-P6u0
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• Übersetzung (https://www.deepl.com/translator)

Risiken: z. B.

• Diskriminierung aufgrund des Dialekts bzw. Akzents (https://www.youtube.com/

watch?v=HbDnxzrbxn4&t=144s)

• Gefahren durch Smart Speaker (https://www.swr.de/unternehmen/audiolab/

hoert-mich-mein-smart-speaker-ab-100.html)

Gesichts- und Emotionserkennung:

Chancen: z. B.

• Verbrechensbekämpfung (https://www.br.de/fernsehen/ard-alpha/sendungen/

campus/doku/verbrechen-sicherheit-ueberwachung-campus-doku-100.html)

• Autismus Erkennung (https://www.youtube.com/watch?v=YQpTlnWYAqE)

Risiken: z. B.

• Gesichtserkennung in China (https://www.youtube.com/watch?v=iT9Xq77H5rU)

• Täuschung der Gesichtserkennung bei Smartphones (https://www.test.de/Sicher-

heitsluecke-bei-Smart-phones-Handysperre-mit-Foto-ausgetrickst-5908999-

0/)
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