
28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 1/11

View original

My pain building a WYSIWYG

editor with contenteditable

In my years of frontend experience, this
project gave me the wildest ride in
terms of rare bugs and unexpected
behavior.

6 min. read

development 17/09/2021

Naturally, when a text editor comes up in a

discussion, creating a custom solution is not

the first thing that comes to mind. So I went

ahead, and I started looking for what reliable

WYSIWYG editors I could use. There are quite

a few ready solutions on the internet. Some are

famous and used by well-known platforms such

as WordPress. But many are also abandoned

and are left to collect dust in GitHub

repositories.

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 2/11

After lots of time searching and testing editors

online, it turns out that we have some rather

unique requirements. None of the available

editors met our criteria, so I was set on an

adventure to code a custom WYSIWYG editor.

In my years of frontend experience, this project

gave me the wildest ride in terms of rare bugs

and unexpected behavior. I've googled so hard

that I ended up finding obscure WebKit bugs

that aren't closed since a decade ago!

I want to clear out that I have only used

modern Chrome and Firefox. Contenteditable in

Safari and older browsers is another world that

I will cover in future blog posts.

A custom WYSIWYG editor in 2021?

You might ask yourself, do we need an in-house

solution when there are hundreds of options

out there? And the answer is surprising, yes -

we do!

The nature of our services asks for it; we need a

custom data type to store and process the

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 3/11

contents of a contenteditable for later use in

our product line. For example, the content you

create through our editor must be searchable,

and also it is rendered in all of our products in

very diverse styles - such as in the helpdesk

widget, search widget, or our knowledge base

platform.

The current solutions don't offer too much

control in processing the data from the

contenteditable - the output is always dirty

HTML, and storing and processing HTML

generated by a contenteditable in the database

is a no-go.

Oh, and we also needed as many elements as

possible, including custom ones which not only

the current libraries didn't support - but also it's

not possible to extend functionality or register

new ones unless you fork the whole thing.

Our editor currently supports:

Bold
Italic
Underline
Headings

https://web.archive.org/web/20230201022536/https://answerly.io/helpdesk-widget
https://web.archive.org/web/20230201022536/https://answerly.io/search-widget
https://web.archive.org/web/20230201022536/https://answerly.io/knowledge-base

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 4/11

Bulleted List
URLs
Inline Code
Images
Table
Horizontal Dividers
Blockquote
Code block (with syntax highlights and multi-
language support)
Youtube videos
and a few more

Starting the development

My thought process was to use the

contenteditable attribute to create a

straightforward editor first - by following best

practices available online. The kind of editor

that only supports bold, italic, and underline.

And then figure out a way to extend

functionality and add custom elements as we

need them.

My thinking took that direction because when I

see open source projects such as Firefox or

Chromium, "inconsistent mess" is not the first

thought that goes in my mind. I thought the

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 5/11

current contenteditable attribute could handle

such a simple editor - but I was wrong.

Pain #1: execCommand is deprecated

To make a text bold with contenteditable, you

have to use the JavaScript method

execCommand which, if you look up into the

MDN, it's a deprecated method! And there is no

other method available. It's the only one you

can use to style text in a contenteditable!

Frankly, this is quite a red flag, but I decided to

push forward anyway.

Many editors on the planet right now are at risk

of simply stopping working in the next version

of Chrome or Firefox when the browser vendor

decides to drop execCommand altogether. I

haven't seen any editors that don't use the

execCommand method yet.

Pain #2: Backspace merge from hell

Picture this scenario: Your cursor is at the

beginning of a paragraph. Just before this

paragraph, there is a heading (H2), and you hit

backspace. What should happen?

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 6/11

In layman's terms: the paragraph should join

the heading. And in more technical terms: the

contents of the P tag should go inside the

contents of the H2 tag. But this is not what was

happening when I looked in dev tools.

<!-- current HTML -->

<h2>My heading</h2>

<p>My very short paragraph.</p>

<!-- expected outcome -->

<h2>My headingMy very short paragraph.</h2>

Upon hitting backspace, the browser decides to

convert the P tag into a SPAN - and then it

applies some inline CSS to this SPAN to make

it look like the H2 tag and then puts this new

SPAN element inside the H2 tag.

<!-- actual outcome -->

<h2>My heading<span style="font-size: 20px; line-

height: 25px;">My very short paragraph.</h2>

To add more to this complexity, if the

paragraph has styles such as bold and italic - it

will also convert the B and I elements into a

SPAN and preserve the text style with inline

CSS through the text-style property.

When I found out that contenteditable is

committing sins with HTML elements, I

questioned whether I would finish this project.

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 7/11

But this is only pain #2, so keep reading to find

out more!

Pain #3: Funny line breaks

The most well-known way to add a line break

(vertical space) since Firefox 1 is by using the

BR tag.

When the cursor is in the middle of a chunk of

text, and you hit Enter twice - you would

naturally think that chunk of text gets separated

in two, and then contenteditable adds two BR

tags in between.

<!-- current HTML -->

<p>.. some very long paragraph with multiple <u>styles

such as, bold and <i>itallic</i></u></p>

<!-- expected outcome -->

<p>.. some very long paragraph with multiple <u>styles

such as,</u></p>

<p><u>bold and <i>italic</i></u></p>

Instead, what happens is that the two BR tags

do get added, but for some reason, also,

contenteditable wraps the BRs around the tags

that happened to wrap the text before you hit

enter twice - resulting in some of the fanciest

BR tags I've seen!

<!-- actual outcome -->

<p>.. some very long paragraph with multiple <u>styles

such as,</u></p>

<p><u>
</u></p>

<p><u>
</u></p>

<p><u>bold and <i>italic</i></u></p>

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 8/11

No matter how nested the markup is, these

funny br tags will follow.

For example:

<p>
</p>
<p><i><u>
</u></i></p>
<h2><u>
</u></h2>

This behavior seems like a bug at first because

the outcome is simply voodoo. But (I think) the

browser is trying to preserve the text style, just

in case you decide to write text inside these

line breaks.

Pain #4: You can style everything!

As long as you can select a piece of text in

contenteditable, the shortcut CTRL + B will

make the text bold, and it doesn't matter where

it sits or for what reason.

As I mentioned at the beginning of this blog

post, our editor has custom elements such as

tables or code highlights. It made no sense to

allow text styling for many of these custom

elements, but it was possible anyway!

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 9/11

I got around this issue, though, by adding

contenteditable=false to the wrapper DIV

of our custom elements.

What's next

The default behavior in contenteditable is not

fun. It feels like it's a hack on top of a hack - it

doesn't think too far ahead, and if you allow it, it

will nest your HTML infinitely as long as the

content looks good on-screen.

I'm creating an open-source version of a new

editor - one that I would build after getting all

this experience and knowledge from working

with the editor at Answerly.

This new editor would handle all keystroke

events manually and would allow for some very

consistent configurations and features such as:

Choosing what elements to use for text
styles
Consistent line breaks
Better merge
Adding and editing custom elements
Configuring the outcome of the
contenteditable (Ie. JSON, Markdown)

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 10/11

I will be sharing my development story and

code in this blog.

The future of the real contenteditable

Contenteditable will be consistent, eventually,

whether with existing proposals or something

completely new. But say it updated tomorrow, it

would take a lot of time until browser adoption

grows - so until now, we're stuck with the

current solutions.

If you search the internet, two propositions

seem to have the most traction and promise to

improve the current contenteditable.

contenteditable=minimal

This proposition from Ben Peters @ Microsoft

suggests a minimalistic version of

contenteditable that only supports caret

drawing and moving, some keyboard events,

and typing characters. This contenteditable

would allow the user to handle the styling

manually, something similar to what I will be

doing with my open source project.

Polymer elements and Shadow DOM

An old proposition includes rebuilding

contenteditable with Polymer Elements and the

Shadow DOM. It would work as the current

contenteditable but allow for a lot more

customization and more events.

28/06/2023, 12:57 My pain building a WYSIWYG editor with contenteditable

https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-pain-developing-a-wysiwyg-editor-with-contenteditable/ 11/11

Many blogposts cover this last proposition

according to my research, but none include a

source, so I'd take it with a pinch of salt.

References:

contenteditable=minimal proposition in w3
Merge bug in webkit
execCommand is deprecated
contenteditable in MDN

The Wayback Machine -
https://web.archive.org/web/20230201022536/https://answerly.io/blog/my-
pain-developing-a-wysiwyg-editor-with-contenteditable/

https://web.archive.org/web/20230201022536/https://lists.w3.org/Archives/Public/public-webapps/2014AprJun/0296.html
https://web.archive.org/web/20230201022536/https://bugs.webkit.org/show_bug.cgi?id=114791
https://web.archive.org/web/20230201022536/https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand
https://web.archive.org/web/20230201022536/https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/contenteditable

